ZmCRK5A kinase enhances drought tolerance in maize via phosphorylation-dependent inhibition of ZmSMH4.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aifang Ma, Yuemei Zhang, Yu Wang, He Ma, Hui Chen, Yuanpeng Qi, Manman Zhang, Ziting Zhong, Jinkui Cheng, Junsheng Qi, Shuhua Yang, Zhizhong Gong
{"title":"ZmCRK5A kinase enhances drought tolerance in maize via phosphorylation-dependent inhibition of ZmSMH4.","authors":"Aifang Ma, Yuemei Zhang, Yu Wang, He Ma, Hui Chen, Yuanpeng Qi, Manman Zhang, Ziting Zhong, Jinkui Cheng, Junsheng Qi, Shuhua Yang, Zhizhong Gong","doi":"10.1111/jipb.70054","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress orchestrates a phosphorylation-dependent signaling cascade that reprograms transcriptional networks to enhance crop resilience. Through a large-scale transgenic screening, we identified ZmCRK5A, a Ca<sup>2+</sup>-independent calcium-dependent protein kinase (CDPK)-related kinase, as a master regulator of drought tolerance in maize. Mechanistically, ZmCRK5A directly phosphorylates the MYB transcriptional repressor ZmSMH4 (Single MYB Histone 4) at three conserved serine residues (Ser42/43/59) within its SANT domain, as demonstrated by in vitro kinase assays and site-directed mutagenesis. This post-translational modification abolishes ZmSMH4's DNA-binding capacity to ACC cis-elements, thereby de-repressing the potassium influx channel gene ZmKCH1 (K<sup>+</sup> Channel 1). Functional validation revealed that ZmKCH1 overexpression confers drought resilience through optimized stomatal dynamics and water retention, whereas clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9(Cas9)-generated zmkch1 mutants display hypersensitivity to water deficit. Crucially, field evaluations demonstrated preserved grain yield alongside enhanced drought tolerance in plants with activated ZmCRK5A-ZmSMH4-ZmKCH1 signaling. Our findings delineate a kinase-transcription factor-ion channel axis that dynamically fine-tunes drought responses while maintaining productivity, providing a strategic framework for engineering stress-adapted crops without yield penalties.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70054","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress orchestrates a phosphorylation-dependent signaling cascade that reprograms transcriptional networks to enhance crop resilience. Through a large-scale transgenic screening, we identified ZmCRK5A, a Ca2+-independent calcium-dependent protein kinase (CDPK)-related kinase, as a master regulator of drought tolerance in maize. Mechanistically, ZmCRK5A directly phosphorylates the MYB transcriptional repressor ZmSMH4 (Single MYB Histone 4) at three conserved serine residues (Ser42/43/59) within its SANT domain, as demonstrated by in vitro kinase assays and site-directed mutagenesis. This post-translational modification abolishes ZmSMH4's DNA-binding capacity to ACC cis-elements, thereby de-repressing the potassium influx channel gene ZmKCH1 (K+ Channel 1). Functional validation revealed that ZmKCH1 overexpression confers drought resilience through optimized stomatal dynamics and water retention, whereas clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9(Cas9)-generated zmkch1 mutants display hypersensitivity to water deficit. Crucially, field evaluations demonstrated preserved grain yield alongside enhanced drought tolerance in plants with activated ZmCRK5A-ZmSMH4-ZmKCH1 signaling. Our findings delineate a kinase-transcription factor-ion channel axis that dynamically fine-tunes drought responses while maintaining productivity, providing a strategic framework for engineering stress-adapted crops without yield penalties.

ZmCRK5A激酶通过磷酸化依赖性抑制ZmSMH4增强玉米的抗旱性。
干旱胁迫协调磷酸化依赖的信号级联,重编程转录网络,以提高作物的抗灾能力。通过大规模的转基因筛选,我们发现ZmCRK5A是一种Ca2+依赖性钙依赖性蛋白激酶(CDPK)相关激酶,是玉米抗旱性的主要调控因子。在机制上,ZmCRK5A直接磷酸化MYB转录抑制因子ZmSMH4 (Single MYB Histone 4)在其SANT结构域中的三个保守丝氨酸残基(Ser42/43/59),这已被体外激酶实验和定点诱变证实。这种翻译后修饰消除了ZmSMH4对ACC顺式元件的dna结合能力,从而去抑制钾内流通道基因ZmKCH1 (K+通道1)。功能验证表明,ZmKCH1过表达通过优化气孔动力学和水分保持来增强抗旱能力,而聚集规律间隔短回复性重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)产生的ZmKCH1突变体对水分缺乏表现出超敏感性。重要的是,田间评估表明,激活ZmCRK5A-ZmSMH4-ZmKCH1信号的植株在保持粮食产量的同时提高了抗旱性。我们的研究结果描绘了一个激酶-转录因子-离子通道轴,它在保持生产力的同时动态微调干旱反应,为不影响产量的工程适应应力作物提供了一个战略框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信