An annular cylindrical oxidation flow reactor: hydrodynamic characterization and validation for gas-particle processing studies.

IF 3.9 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Beristain-Montiel Erik, Cisneros-Vélez Mariana, Villarreal-Medina Rodrigo, Ramírez-Argáez Marco Aurelio, Peralta Oscar, Castro Telma, Salcedo Dara, Torres-Jardón Ricardo
{"title":"An annular cylindrical oxidation flow reactor: hydrodynamic characterization and validation for gas-particle processing studies.","authors":"Beristain-Montiel Erik, Cisneros-Vélez Mariana, Villarreal-Medina Rodrigo, Ramírez-Argáez Marco Aurelio, Peralta Oscar, Castro Telma, Salcedo Dara, Torres-Jardón Ricardo","doi":"10.1039/d5em00412h","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidation flow reactors (OFRs) are essential tools for simulating atmospheric aging of aerosols, yet conventional laminar-flow designs often suffer from non-uniform oxidant exposure, broad residence time distributions (RTDs), and significant wall losses, limiting their ability to replicate real-world gas-and-particle-phase processes. Here, we present the design, hydrodynamic characterization, and experimental validation of a novel Annular Cylindrical Oxidation Flow Reactor (AC-OFR) featuring an optimized annular-flow geometry. Using computational fluid dynamics (CFD) simulations and a full factorial design of experiments, we identified reactor dimensions that minimize recirculation and dead volume, achieving RTDs approaching ideal plug flow for both gases and particles. Experimental measurements confirmed high transmission efficiencies for ozone, sulfur dioxide, and particles (50-800 nm), with strong gas-particle coupling and minimal wall losses. The AC-OFR enables precise, tunable oxidant exposures-reaching OH radical exposures equivalent to 0.5-15.3 days with 7 s<sup>-1</sup> of external OH reactivity added and ozone exposures up to 0.74 days of atmospheric aging-by adjusting the UV lamp free surface. Validation experiments with α-pinene demonstrated steady-state secondary organic aerosol (SOA) yields (0.11-0.14) consistent with or exceeding those reported for traditional OFRs and revealed robust nucleation and growth dynamics. The AC-OFR thus provides a flexible, high-performance platform for controlled gas and gas-particle oxidation studies, bridging laboratory experimentation and atmospheric processes.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d5em00412h","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidation flow reactors (OFRs) are essential tools for simulating atmospheric aging of aerosols, yet conventional laminar-flow designs often suffer from non-uniform oxidant exposure, broad residence time distributions (RTDs), and significant wall losses, limiting their ability to replicate real-world gas-and-particle-phase processes. Here, we present the design, hydrodynamic characterization, and experimental validation of a novel Annular Cylindrical Oxidation Flow Reactor (AC-OFR) featuring an optimized annular-flow geometry. Using computational fluid dynamics (CFD) simulations and a full factorial design of experiments, we identified reactor dimensions that minimize recirculation and dead volume, achieving RTDs approaching ideal plug flow for both gases and particles. Experimental measurements confirmed high transmission efficiencies for ozone, sulfur dioxide, and particles (50-800 nm), with strong gas-particle coupling and minimal wall losses. The AC-OFR enables precise, tunable oxidant exposures-reaching OH radical exposures equivalent to 0.5-15.3 days with 7 s-1 of external OH reactivity added and ozone exposures up to 0.74 days of atmospheric aging-by adjusting the UV lamp free surface. Validation experiments with α-pinene demonstrated steady-state secondary organic aerosol (SOA) yields (0.11-0.14) consistent with or exceeding those reported for traditional OFRs and revealed robust nucleation and growth dynamics. The AC-OFR thus provides a flexible, high-performance platform for controlled gas and gas-particle oxidation studies, bridging laboratory experimentation and atmospheric processes.

环形圆柱形氧化流反应器:气-颗粒处理研究的流体动力学特性和验证。
氧化流反应器(ofr)是模拟大气气溶胶老化的重要工具,但传统的层流设计通常存在不均匀的氧化剂暴露、较宽的停留时间分布(rtd)和显著的壁面损失,限制了它们复制现实世界气相和颗粒相过程的能力。在这里,我们介绍了一种新型环形圆柱形氧化流动反应器(AC-OFR)的设计、流体动力学表征和实验验证,该反应器具有优化的环形流动几何形状。通过计算流体动力学(CFD)模拟和全因子实验设计,我们确定了反应器尺寸,使再循环和死体积最小化,使rtd接近理想的气体和颗粒塞流。实验测量证实了臭氧、二氧化硫和颗粒(50-800 nm)的高透射效率,具有强的气-颗粒耦合和最小的壁损失。AC-OFR通过调节无紫外灯表面,实现精确、可调的氧化剂暴露,达到相当于0.5-15.3天的OH自由基暴露,添加7 s-1的外部OH反应性,以及高达0.74天的大气老化臭氧暴露。α-蒎烯的验证实验表明,稳态二次有机气溶胶(SOA)产率(0.11-0.14)与传统ofr的报告一致或超过,并显示出强大的成核和生长动力学。因此,AC-OFR为受控气体和气体颗粒氧化研究提供了一个灵活、高性能的平台,连接了实验室实验和大气过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信