Wettability-gradient-driven capillary filling dynamics in architected tapered microchannels.

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-10-24 DOI:10.1039/d5sm00771b
Soumadip Das, Vinod B Vanarse, Omkar S Deshmukh
{"title":"Wettability-gradient-driven capillary filling dynamics in architected tapered microchannels.","authors":"Soumadip Das, Vinod B Vanarse, Omkar S Deshmukh","doi":"10.1039/d5sm00771b","DOIUrl":null,"url":null,"abstract":"<p><p>Capillary-driven transport is central to soft and biological matter, from plant-xylem water ascent to autonomous flows in microfluidic networks. Here, we systematically investigate autonomous capillary filling dynamics in microchannels combining geometric tapering and spatially variable wettability. Using high-resolution computational fluid dynamics (Navier-Stokes equations and the level-set method), we quantify the impact of stepwise, linear, and quadratic contact-angle profiles on the Laplace pressure, interface morphology, and flow velocity. For uniform channels and contact angles, the simulations reproduce the classical Lucas-Washburn regime, characterized by a viscous slowdown. In contrast, geometric tapering amplifies the capillary pressure gradient, sustaining or accelerating interface advancement. Tailored wettability gradients enable further control: decreasing the contact angle maintains flow, while increasing the angle toward 90° robustly halts motion, enabling on-demand interface arrest. These results reveal how geometric and interfacial patterning can be coupled for precision fluid manipulation, offering broadly applicable design principles for advanced passive microfluidic systems and programmable soft-matter transport.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00771b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Capillary-driven transport is central to soft and biological matter, from plant-xylem water ascent to autonomous flows in microfluidic networks. Here, we systematically investigate autonomous capillary filling dynamics in microchannels combining geometric tapering and spatially variable wettability. Using high-resolution computational fluid dynamics (Navier-Stokes equations and the level-set method), we quantify the impact of stepwise, linear, and quadratic contact-angle profiles on the Laplace pressure, interface morphology, and flow velocity. For uniform channels and contact angles, the simulations reproduce the classical Lucas-Washburn regime, characterized by a viscous slowdown. In contrast, geometric tapering amplifies the capillary pressure gradient, sustaining or accelerating interface advancement. Tailored wettability gradients enable further control: decreasing the contact angle maintains flow, while increasing the angle toward 90° robustly halts motion, enabling on-demand interface arrest. These results reveal how geometric and interfacial patterning can be coupled for precision fluid manipulation, offering broadly applicable design principles for advanced passive microfluidic systems and programmable soft-matter transport.

结构锥形微通道中润湿性梯度驱动的毛细管填充动力学。
从植物木质部水分上升到微流体网络中的自主流动,毛细管驱动的运输是软物质和生物物质的核心。在这里,我们系统地研究了结合几何变细和空间可变润湿性的微通道中的自主毛细管填充动力学。利用高分辨率计算流体动力学(Navier-Stokes方程和水平集方法),我们量化了逐步、线性和二次接触角剖面对拉普拉斯压力、界面形态和流速的影响。对于均匀的通道和接触角,模拟再现了以粘性减速为特征的经典Lucas-Washburn状态。相反,几何变细放大了毛细管压力梯度,维持或加速了界面的推进。量身定制的润湿性梯度可以实现进一步的控制:减小接触角保持流动,而增大90°的接触角则可以稳定地停止运动,从而实现按需界面阻止。这些结果揭示了几何和界面图案如何耦合用于精密流体操纵,为先进的被动微流体系统和可编程软物质传输提供了广泛适用的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信