{"title":"Wettability-gradient-driven capillary filling dynamics in architected tapered microchannels.","authors":"Soumadip Das, Vinod B Vanarse, Omkar S Deshmukh","doi":"10.1039/d5sm00771b","DOIUrl":null,"url":null,"abstract":"<p><p>Capillary-driven transport is central to soft and biological matter, from plant-xylem water ascent to autonomous flows in microfluidic networks. Here, we systematically investigate autonomous capillary filling dynamics in microchannels combining geometric tapering and spatially variable wettability. Using high-resolution computational fluid dynamics (Navier-Stokes equations and the level-set method), we quantify the impact of stepwise, linear, and quadratic contact-angle profiles on the Laplace pressure, interface morphology, and flow velocity. For uniform channels and contact angles, the simulations reproduce the classical Lucas-Washburn regime, characterized by a viscous slowdown. In contrast, geometric tapering amplifies the capillary pressure gradient, sustaining or accelerating interface advancement. Tailored wettability gradients enable further control: decreasing the contact angle maintains flow, while increasing the angle toward 90° robustly halts motion, enabling on-demand interface arrest. These results reveal how geometric and interfacial patterning can be coupled for precision fluid manipulation, offering broadly applicable design principles for advanced passive microfluidic systems and programmable soft-matter transport.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00771b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Capillary-driven transport is central to soft and biological matter, from plant-xylem water ascent to autonomous flows in microfluidic networks. Here, we systematically investigate autonomous capillary filling dynamics in microchannels combining geometric tapering and spatially variable wettability. Using high-resolution computational fluid dynamics (Navier-Stokes equations and the level-set method), we quantify the impact of stepwise, linear, and quadratic contact-angle profiles on the Laplace pressure, interface morphology, and flow velocity. For uniform channels and contact angles, the simulations reproduce the classical Lucas-Washburn regime, characterized by a viscous slowdown. In contrast, geometric tapering amplifies the capillary pressure gradient, sustaining or accelerating interface advancement. Tailored wettability gradients enable further control: decreasing the contact angle maintains flow, while increasing the angle toward 90° robustly halts motion, enabling on-demand interface arrest. These results reveal how geometric and interfacial patterning can be coupled for precision fluid manipulation, offering broadly applicable design principles for advanced passive microfluidic systems and programmable soft-matter transport.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.