Sara Klopčič, Aljaž Kavčič, Nerea Sebastián, Matjaž Humar
{"title":"Electrically and Geometrically Tunable Photon Pair Entanglement from Ferroelectric Nematic Liquid Crystal.","authors":"Sara Klopčič, Aljaž Kavčič, Nerea Sebastián, Matjaž Humar","doi":"10.1002/advs.202515206","DOIUrl":null,"url":null,"abstract":"<p><p>Entangled photons are a cornerstone of quantum technologies, enabling applications from secure communication to quantum computing. A longstanding challenge is to develop a compact source that would generate polarization-entangled photons with tunable quantum state on demand. The promising materials for such sources are ferroelectric nematic liquid crystals (FNLCs), due to their nonlinear optical properties and easily controllable configuration. In this work, it is demonstrated that the polarization state and the degree of entanglement of photon pairs generated within FNLCs can be changed in a controllable and reversible manner. First, tuning of the entanglement is demonstrated via sample geometry with twisted FNLC configurations in a sample of varying thickness. Secondly, by applying an electric field, the degree of entanglement can be tuned in real time. In both scenarios, the degree of entanglement can be adjusted from nearly entirely separate photons to fully entangled. These findings represent a significant step toward tunable quantum sources that can produce any desired polarization state on demand. In the future, by adding more electrodes, different parts of the sample could be controlled individually, allowing for the creation of pixelated quantum light sources.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e15206"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202515206","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Entangled photons are a cornerstone of quantum technologies, enabling applications from secure communication to quantum computing. A longstanding challenge is to develop a compact source that would generate polarization-entangled photons with tunable quantum state on demand. The promising materials for such sources are ferroelectric nematic liquid crystals (FNLCs), due to their nonlinear optical properties and easily controllable configuration. In this work, it is demonstrated that the polarization state and the degree of entanglement of photon pairs generated within FNLCs can be changed in a controllable and reversible manner. First, tuning of the entanglement is demonstrated via sample geometry with twisted FNLC configurations in a sample of varying thickness. Secondly, by applying an electric field, the degree of entanglement can be tuned in real time. In both scenarios, the degree of entanglement can be adjusted from nearly entirely separate photons to fully entangled. These findings represent a significant step toward tunable quantum sources that can produce any desired polarization state on demand. In the future, by adding more electrodes, different parts of the sample could be controlled individually, allowing for the creation of pixelated quantum light sources.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.