Imtak Jeon, Hyojoong Kim, Nakwoo Kim, Aaron Poole, Augniva Ray
{"title":"Supersymmetric localisation of \\( \\mathcal{N} \\) = (2, 2) theories on a spindle","authors":"Imtak Jeon, Hyojoong Kim, Nakwoo Kim, Aaron Poole, Augniva Ray","doi":"10.1007/JHEP10(2025)189","DOIUrl":null,"url":null,"abstract":"<p>We consider two-dimensional <span>\\( \\mathcal{N} \\)</span> = (2, 2) supersymmetric field theories living on a weighted projective space <span>\\( {\\mathbbm{WCP}}_{\\left[{n}_1,{n}_2\\right]}^1 \\)</span>, often referred to as a spindle. Starting from the spindle solution of five-dimensional minimal gauged supergravity, we construct a theory on a spindle which preserves supersymmetry via the anti-twist mechanism and admits two Killing spinors of opposite <i>R</i>-charge. We apply the technique of supersymmetric localisation to compute the exact partition function for a theory consisting of an abelian vector multiplet and a chiral multiplet, finding that the path integral localises to a real moduli space of vector multiplet fluctuations. We compute the one-loop determinants via the equivariant index, using both the method of unpaired eigenvalues and the fixed point theorem, finding agreement between the two approaches. We conclude with the explicit partition function for an example of a charged chiral multiplet in the presence of a Fayet-Iliopoulos term and comment on its dependence on the overall length scale of the geometry. This work paves the way towards uncovering two-dimensional dualities, such as mirror symmetry, for field theories defined on orbifold backgrounds.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)189.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2025)189","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We consider two-dimensional \( \mathcal{N} \) = (2, 2) supersymmetric field theories living on a weighted projective space \( {\mathbbm{WCP}}_{\left[{n}_1,{n}_2\right]}^1 \), often referred to as a spindle. Starting from the spindle solution of five-dimensional minimal gauged supergravity, we construct a theory on a spindle which preserves supersymmetry via the anti-twist mechanism and admits two Killing spinors of opposite R-charge. We apply the technique of supersymmetric localisation to compute the exact partition function for a theory consisting of an abelian vector multiplet and a chiral multiplet, finding that the path integral localises to a real moduli space of vector multiplet fluctuations. We compute the one-loop determinants via the equivariant index, using both the method of unpaired eigenvalues and the fixed point theorem, finding agreement between the two approaches. We conclude with the explicit partition function for an example of a charged chiral multiplet in the presence of a Fayet-Iliopoulos term and comment on its dependence on the overall length scale of the geometry. This work paves the way towards uncovering two-dimensional dualities, such as mirror symmetry, for field theories defined on orbifold backgrounds.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).