Luigi C. Bresciani, Giacomo Brunello, Gabriele Levati, Pierpaolo Mastrolia, Paride Paradisi
{"title":"Renormalization of effective field theories via on-shell methods: the case of axion-like particles","authors":"Luigi C. Bresciani, Giacomo Brunello, Gabriele Levati, Pierpaolo Mastrolia, Paride Paradisi","doi":"10.1007/JHEP10(2025)190","DOIUrl":null,"url":null,"abstract":"<p>We consider the most general axion-like particle effective field theory, including both CP-odd and CP-even types of interactions, and evaluate the corresponding renormalization group equations, improving and extending previous results in the literature. Our calculations exploit on-shell and unitarity-based methods. The relevant phase-space cut-integrals are carried out using different integration methods, among which the double-cut integration via Stokes’ theorem proves to be technically simpler. A close comparison between the standard Feynman diagrammatic approach and the unitarity-based method enables us to explicitly verify the reduction of complexity in the latter case, along with a more direct and elegant way to establish a connection among anomalous dimensions of operators that are dual under the CP symmetry.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)190.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2025)190","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the most general axion-like particle effective field theory, including both CP-odd and CP-even types of interactions, and evaluate the corresponding renormalization group equations, improving and extending previous results in the literature. Our calculations exploit on-shell and unitarity-based methods. The relevant phase-space cut-integrals are carried out using different integration methods, among which the double-cut integration via Stokes’ theorem proves to be technically simpler. A close comparison between the standard Feynman diagrammatic approach and the unitarity-based method enables us to explicitly verify the reduction of complexity in the latter case, along with a more direct and elegant way to establish a connection among anomalous dimensions of operators that are dual under the CP symmetry.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).