B H Lee,Z Yang,Y Wang,J Levy,N Tamura,S Webb,S Bone,S P Ho
{"title":"Sulfur Species in Zinc-Rich Condylar Zones of a Rat Temporomandibular Joint.","authors":"B H Lee,Z Yang,Y Wang,J Levy,N Tamura,S Webb,S Bone,S P Ho","doi":"10.1177/00220345251361124","DOIUrl":null,"url":null,"abstract":"We performed synchrotron-based micro-X-ray absorption near-edge spectroscopy (µ-XANES) coupled with micro-X-ray fluorescence (µ-XRF) for the identification of elements that included biometal zinc (Zn) and nonmetal sulfur (S) (and its species) in the condylar zones of a rat temporomandibular joint (TMJ). Zone-specific spatial localization of biometal Zn and nonmetal S from a materials viewpoint when correlated with hypoxia inducible factor-1α (HIF-1α) (a surrogate for tissue oxygenation) can provide insights into Zn-specific redox pathways at the vulnerable subchondral interface. Histologic localization of Zn, HIF-1α, and sulfur-rich proteoglycans (PGs) were mapped using an optical microscope. The µ-XRF maps coupled with site-specific micro-X-ray diffraction (µ-XRD) patterns were used to underline Zn-incorporated biological apatite in the subchondral bone and the bone of a rat TMJ condyle. Results demonstrated an association between Zn, PG, and HIF-1α histologic maps with µ-XRF, µ-XANES, and µ-XRD data and provided insights into plausible biological S species in Zn-enriched zones of a rat TMJ condyle. Spatially localized Zn and S underscore their roles in cell and tissue functions in a zone-specific manner. Elemental Zn with organic and inorganic S species at the cartilage-bone interface and the biomineral phase of Zn-enriched biological apatite from subchondral bone to condylar bone were ascertained using µ-XRF-XANES and µ-XRF-XRD. The coupled µ-XRF-XANES in situ complemented with µ-XRF-XRD in situ and immunohistochemistry provided valuable biological insights into zone-specific biological pathways in rat TMJ condyles. Based on these data, we present a workflow to reliably map and correlate S species within Zn-enriched regions of cartilage, bone, and their interface. We suggest the use of this correlative and complementary microspectroscopic spatial information for zone-specific localization of biometal Zn and nonmetal S to gain insights into plausible microanatomy-specific oxidative stress in the TMJ.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"201 1","pages":"220345251361124"},"PeriodicalIF":5.9000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345251361124","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
We performed synchrotron-based micro-X-ray absorption near-edge spectroscopy (µ-XANES) coupled with micro-X-ray fluorescence (µ-XRF) for the identification of elements that included biometal zinc (Zn) and nonmetal sulfur (S) (and its species) in the condylar zones of a rat temporomandibular joint (TMJ). Zone-specific spatial localization of biometal Zn and nonmetal S from a materials viewpoint when correlated with hypoxia inducible factor-1α (HIF-1α) (a surrogate for tissue oxygenation) can provide insights into Zn-specific redox pathways at the vulnerable subchondral interface. Histologic localization of Zn, HIF-1α, and sulfur-rich proteoglycans (PGs) were mapped using an optical microscope. The µ-XRF maps coupled with site-specific micro-X-ray diffraction (µ-XRD) patterns were used to underline Zn-incorporated biological apatite in the subchondral bone and the bone of a rat TMJ condyle. Results demonstrated an association between Zn, PG, and HIF-1α histologic maps with µ-XRF, µ-XANES, and µ-XRD data and provided insights into plausible biological S species in Zn-enriched zones of a rat TMJ condyle. Spatially localized Zn and S underscore their roles in cell and tissue functions in a zone-specific manner. Elemental Zn with organic and inorganic S species at the cartilage-bone interface and the biomineral phase of Zn-enriched biological apatite from subchondral bone to condylar bone were ascertained using µ-XRF-XANES and µ-XRF-XRD. The coupled µ-XRF-XANES in situ complemented with µ-XRF-XRD in situ and immunohistochemistry provided valuable biological insights into zone-specific biological pathways in rat TMJ condyles. Based on these data, we present a workflow to reliably map and correlate S species within Zn-enriched regions of cartilage, bone, and their interface. We suggest the use of this correlative and complementary microspectroscopic spatial information for zone-specific localization of biometal Zn and nonmetal S to gain insights into plausible microanatomy-specific oxidative stress in the TMJ.
期刊介绍:
The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.