Optical Switching of Catalytic Pathways for Hydrogen Generation via Light-Handedness Control on Chiral Nanostructures.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qingli Wang,Jiahong Liu,Shouyuan Li,Shuaikun Ji,Caiwei Zhang,Junting Wang,Jiatao Zhang,Yiou Wang
{"title":"Optical Switching of Catalytic Pathways for Hydrogen Generation via Light-Handedness Control on Chiral Nanostructures.","authors":"Qingli Wang,Jiahong Liu,Shouyuan Li,Shuaikun Ji,Caiwei Zhang,Junting Wang,Jiatao Zhang,Yiou Wang","doi":"10.1002/anie.202517047","DOIUrl":null,"url":null,"abstract":"Precise optical control over catalytic pathways remains a major challenge in solar-driven hydrogen production. Here, we report a reversible light-handedness-dependent switching mechanism between photocatalysis and photothermal catalysis using a standard Au@CdS nanocatalyst functionalized with chiral cysteine ligands. The switching behavior is governed by the interplay of chemical chirality and circularly polarized light, mediated by the chirality-induced spin selectivity effect. When the handedness of circularly polarized light matches the catalyst's chirality, spin-polarized carriers are efficiently transferred, favoring photocatalysis. In contrast, mismatched conditions suppress charge transfer, enhance recombination, and induce localized heating, shifting the reaction toward photothermal catalysis. Tuning the handedness of circularly polarized light to mismatch the catalyst chirality induces a significant photothermal effect, with temperatures reaching 343 K and hydrogen evolution rates of up to 4.8 mmol g-1 h-1, doubling the performance in the matched case. This study introduces a light-handedness-controlled catalytic switch that enables dynamic modulation between two reaction modes using the same chiral catalyst, advancing our mechanistic understanding of spin-dependent photothermal phenomena and establishing a versatile platform for optically tunable solar fuel production. The interaction of chemical and optical chirality offers a novel approach to designing next-generation photocatalysts that can be tailored for energy conversion.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"73 1","pages":"e202517047"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202517047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise optical control over catalytic pathways remains a major challenge in solar-driven hydrogen production. Here, we report a reversible light-handedness-dependent switching mechanism between photocatalysis and photothermal catalysis using a standard Au@CdS nanocatalyst functionalized with chiral cysteine ligands. The switching behavior is governed by the interplay of chemical chirality and circularly polarized light, mediated by the chirality-induced spin selectivity effect. When the handedness of circularly polarized light matches the catalyst's chirality, spin-polarized carriers are efficiently transferred, favoring photocatalysis. In contrast, mismatched conditions suppress charge transfer, enhance recombination, and induce localized heating, shifting the reaction toward photothermal catalysis. Tuning the handedness of circularly polarized light to mismatch the catalyst chirality induces a significant photothermal effect, with temperatures reaching 343 K and hydrogen evolution rates of up to 4.8 mmol g-1 h-1, doubling the performance in the matched case. This study introduces a light-handedness-controlled catalytic switch that enables dynamic modulation between two reaction modes using the same chiral catalyst, advancing our mechanistic understanding of spin-dependent photothermal phenomena and establishing a versatile platform for optically tunable solar fuel production. The interaction of chemical and optical chirality offers a novel approach to designing next-generation photocatalysts that can be tailored for energy conversion.
手性纳米结构的光手性控制催化制氢途径的光开关。
对催化途径的精确光学控制仍然是太阳能驱动制氢的主要挑战。在这里,我们报告了一个可逆的光手性依赖于光催化和光热催化之间的开关机制,使用标准Au@CdS纳米催化剂与手性半胱氨酸配体功能化。开关行为受化学手性和圆偏振光的相互作用控制,由手性诱导的自旋选择性效应介导。当圆偏振光的手性与催化剂的手性相匹配时,自旋极化载流子被有效转移,有利于光催化。相反,不匹配条件抑制电荷转移,增强重组,并诱导局部加热,使反应转向光热催化。通过调节圆偏振光的旋向性来匹配催化剂的手性,产生了显著的光热效应,温度达到343 K,析氢速率高达4.8 mmol g-1 h-1,使匹配情况下的性能提高了一倍。本研究介绍了一种轻手性控制的催化开关,可以使用相同的手性催化剂在两种反应模式之间进行动态调制,促进了我们对自旋依赖光热现象的机理理解,并建立了一个光学可调太阳能燃料生产的通用平台。化学和光学手性的相互作用为设计下一代光催化剂提供了一种新的方法,可以为能量转换量身定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信