Tuning the Hsp70 chaperone cycle: emerging roles of GrpE-like NEFs in proteostasis and organelle function.

IF 12.8 1区 生物学 Q1 CELL BIOLOGY
Marc A Morizono,Tiffany V Safar,Mark A Herzik
{"title":"Tuning the Hsp70 chaperone cycle: emerging roles of GrpE-like NEFs in proteostasis and organelle function.","authors":"Marc A Morizono,Tiffany V Safar,Mark A Herzik","doi":"10.1093/procel/pwaf086","DOIUrl":null,"url":null,"abstract":"The heat shock protein 70 (Hsp70) family of molecular chaperones is essential for nearly every cell to support protein homeostasis through folding, signaling, and quality control. Hsp70 functionality critically depends on co-chaperones, including the GrpE-like family of nucleotide exchange factors (NEFs), first identified in Escherichia coli as GrpE. These factors have long been recognized for their ability to catalyze the release of Hsp70 nucleotide and protein substrates, but recent structural and functional studies have revealed that GrpE-like NEFs are more than passive exchange catalysts, instead acting as dynamic regulators that coordinate chaperone activity with cellular stress responses, organelle-specific demands, and allosteric control of substrate binding and release. In this review, we synthesize decades of research on GrpE-like proteins across bacteria and eukaryotes, culminating in high-resolution structures of the human mitochondrial NEF, GrpEL1, in complex with mitochondrial Hsp70. We examine how architectural features of GrpE-like NEFs have evolved to meet specialized demands, such as thermosensing in bacteria, redox-responsive regulation in vertebrates, and coordination of protein import in mitochondria. We further describe how discrete structural domains dynamically control chaperone cycling, including nucleotide and substrate release, and how gene duplication and domain specialization have driven functional diversification in higher eukaryotes. Finally, we highlight emerging evidence linking NEF activity to mitochondrial homeostasis, stress adaptation, and disease, reframing GrpE-like NEFs as tunable regulators rather than static cofactors. This perspective positions them as stress-adaptive control points in proteostasis and offers a conceptual framework for understanding how ancient chaperone systems have evolved to meet the regulatory needs of modern and complex eukaryotic cells.","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":"1 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwaf086","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The heat shock protein 70 (Hsp70) family of molecular chaperones is essential for nearly every cell to support protein homeostasis through folding, signaling, and quality control. Hsp70 functionality critically depends on co-chaperones, including the GrpE-like family of nucleotide exchange factors (NEFs), first identified in Escherichia coli as GrpE. These factors have long been recognized for their ability to catalyze the release of Hsp70 nucleotide and protein substrates, but recent structural and functional studies have revealed that GrpE-like NEFs are more than passive exchange catalysts, instead acting as dynamic regulators that coordinate chaperone activity with cellular stress responses, organelle-specific demands, and allosteric control of substrate binding and release. In this review, we synthesize decades of research on GrpE-like proteins across bacteria and eukaryotes, culminating in high-resolution structures of the human mitochondrial NEF, GrpEL1, in complex with mitochondrial Hsp70. We examine how architectural features of GrpE-like NEFs have evolved to meet specialized demands, such as thermosensing in bacteria, redox-responsive regulation in vertebrates, and coordination of protein import in mitochondria. We further describe how discrete structural domains dynamically control chaperone cycling, including nucleotide and substrate release, and how gene duplication and domain specialization have driven functional diversification in higher eukaryotes. Finally, we highlight emerging evidence linking NEF activity to mitochondrial homeostasis, stress adaptation, and disease, reframing GrpE-like NEFs as tunable regulators rather than static cofactors. This perspective positions them as stress-adaptive control points in proteostasis and offers a conceptual framework for understanding how ancient chaperone systems have evolved to meet the regulatory needs of modern and complex eukaryotic cells.
调节Hsp70伴侣周期:grpe样nef在蛋白质静止和细胞器功能中的新作用。
热休克蛋白70 (Hsp70)分子伴侣家族对几乎所有细胞通过折叠、信号传导和质量控制来支持蛋白质稳态至关重要。Hsp70的功能严重依赖于共伴侣,包括GrpE样核苷酸交换因子家族(nef),首先在大肠杆菌中被鉴定为GrpE。这些因子长期以来被认为具有催化Hsp70核苷酸和蛋白质底物释放的能力,但最近的结构和功能研究表明,grpe样nef不仅仅是被动交换催化剂,而是作为动态调节剂,协调伴侣活性与细胞应激反应、细胞器特异性需求以及底物结合和释放的变构控制。在这篇综述中,我们综合了几十年来在细菌和真核生物中对grpe样蛋白的研究,最终获得了人类线粒体NEF GrpEL1与线粒体Hsp70复合物的高分辨率结构。我们研究了grpe样nef的结构特征是如何进化以满足特殊需求的,例如细菌的热感、脊椎动物的氧化还原反应调节以及线粒体中蛋白质进口的协调。我们进一步描述了离散结构域如何动态控制伴侣循环,包括核苷酸和底物释放,以及基因复制和结构域特化如何驱动高等真核生物的功能多样化。最后,我们强调了将NEF活性与线粒体稳态、应激适应和疾病联系起来的新证据,将grpe样NEF重新定义为可调节的调节因子,而不是静态的辅助因子。这一观点将它们定位为蛋白质静止状态中的应力适应控制点,并为理解古代伴侣系统如何进化以满足现代和复杂真核细胞的调节需求提供了一个概念框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein & Cell
Protein & Cell CELL BIOLOGY-
CiteScore
24.00
自引率
0.90%
发文量
1029
审稿时长
6-12 weeks
期刊介绍: Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信