Alexandra Pál,Rui M Lima,Hilda Tiricz,Ferhan Ayaydin,Attila Kereszt,Éva Kondorosi,Edit Ábrahám
{"title":"Diverse triggers, common outcome: Senescence in Fix⁻ Medicago truncatula nodules.","authors":"Alexandra Pál,Rui M Lima,Hilda Tiricz,Ferhan Ayaydin,Attila Kereszt,Éva Kondorosi,Edit Ábrahám","doi":"10.1093/plphys/kiaf518","DOIUrl":null,"url":null,"abstract":"Nodule senescence in barrel medic (Medicago truncatula) can occur as a natural, developmentally regulated process or be triggered prematurely by environmental stress or ineffective symbiotic interactions. In this study, we examined five M. truncatula Fix⁻ mutants (dnf4, dnf7-2, TR183, TRV36 and TR36) that fail to fix nitrogen to determine whether they share common senescence-related traits. Our findings reveal that, despite distinct genetic defects, all mutants exhibit similar hallmarks of premature senescence: a rapid decline in the transcription of nitrogen-fixation-related genes (as indicated by DINITROGENASE REDUCTASE (NifH) expression), early degradation of bacteroids and symbiotic cells, recolonization of nodules by saprophytic rhizobia, premature closure of the nodule endodermis, impaired post-mitotic differentiation of the symbiotic cells, and upregulation of senescence marker genes (CYSTEINE PROTEASE 2 (CP2), CYSTEINE PROTEASE 6 (CP6), CHITINASE 2 and PURPLE ACID PHOSPHATASE 22 (PAP22). Neither symbiotic maintenance genes (DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK) and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD) that inhibit plant defense responses nor the defense-related gene PATHOGENESIS-RELATED PROTEIN 10.1 (PR10.1) were upregulated, suggesting that premature senescence in these mutants is driven primarily by proteolytic activities rather than immune responses. These results indicate that early nodule senescence is a common feature of ineffective M. truncatula-Sinorhizobium medicae interactions, independent of the specific genetic mutation. Understanding nodule longevity and functionality may contribute to the development of strategies to enhance symbiotic efficiency in legumes for sustainable agriculture.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"105 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf518","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nodule senescence in barrel medic (Medicago truncatula) can occur as a natural, developmentally regulated process or be triggered prematurely by environmental stress or ineffective symbiotic interactions. In this study, we examined five M. truncatula Fix⁻ mutants (dnf4, dnf7-2, TR183, TRV36 and TR36) that fail to fix nitrogen to determine whether they share common senescence-related traits. Our findings reveal that, despite distinct genetic defects, all mutants exhibit similar hallmarks of premature senescence: a rapid decline in the transcription of nitrogen-fixation-related genes (as indicated by DINITROGENASE REDUCTASE (NifH) expression), early degradation of bacteroids and symbiotic cells, recolonization of nodules by saprophytic rhizobia, premature closure of the nodule endodermis, impaired post-mitotic differentiation of the symbiotic cells, and upregulation of senescence marker genes (CYSTEINE PROTEASE 2 (CP2), CYSTEINE PROTEASE 6 (CP6), CHITINASE 2 and PURPLE ACID PHOSPHATASE 22 (PAP22). Neither symbiotic maintenance genes (DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK) and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD) that inhibit plant defense responses nor the defense-related gene PATHOGENESIS-RELATED PROTEIN 10.1 (PR10.1) were upregulated, suggesting that premature senescence in these mutants is driven primarily by proteolytic activities rather than immune responses. These results indicate that early nodule senescence is a common feature of ineffective M. truncatula-Sinorhizobium medicae interactions, independent of the specific genetic mutation. Understanding nodule longevity and functionality may contribute to the development of strategies to enhance symbiotic efficiency in legumes for sustainable agriculture.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.