Correlative voltage imaging and cryo-electron tomography bridge neuronal activity and molecular structure.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mingyu Jung,Gwanho Ko,Dongsung Lim,Seonghoon Kim,Sojeong Kim,Young-Joon Kim,Myunghwan Choi,Soung-Hun Roh
{"title":"Correlative voltage imaging and cryo-electron tomography bridge neuronal activity and molecular structure.","authors":"Mingyu Jung,Gwanho Ko,Dongsung Lim,Seonghoon Kim,Sojeong Kim,Young-Joon Kim,Myunghwan Choi,Soung-Hun Roh","doi":"10.1038/s41467-025-64431-w","DOIUrl":null,"url":null,"abstract":"Neurons exhibit varying electrophysiological properties due to dynamic changes in spatiotemporal molecular networks. In situ cryo-electron tomography (cryo-ET) provides advantages for high-resolution visualization of macromolecular complexes within their cellular context. Although correlation with fluorescent labeling allows cryo-ET to target specific cellular regions, it does not adequately reflect the electrophysiological properties of heterogeneous neurons. To bridge high-resolution molecular imaging with electrophysiological properties of individual neurons, we develop a Correlative Voltage Imaging and cryo-ET (CoVET) technique. The nondestructive nature of voltage imaging is compatible with cryo-ET, enabling a direct correlation between neuronal electrophysiology and molecular structures. Neurons are clustered based on their electrophysiological properties, allowing for single-cell-guided structural analysis using cryo-ET. We analyze the translational landscapes of individual neurons and find distinct structural characteristics and spatial networks among ribosomes from different electrophysiological clusters. Our results highlight the importance of the correlation between the electrophysiological properties and molecular structures.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":"9378"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64431-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurons exhibit varying electrophysiological properties due to dynamic changes in spatiotemporal molecular networks. In situ cryo-electron tomography (cryo-ET) provides advantages for high-resolution visualization of macromolecular complexes within their cellular context. Although correlation with fluorescent labeling allows cryo-ET to target specific cellular regions, it does not adequately reflect the electrophysiological properties of heterogeneous neurons. To bridge high-resolution molecular imaging with electrophysiological properties of individual neurons, we develop a Correlative Voltage Imaging and cryo-ET (CoVET) technique. The nondestructive nature of voltage imaging is compatible with cryo-ET, enabling a direct correlation between neuronal electrophysiology and molecular structures. Neurons are clustered based on their electrophysiological properties, allowing for single-cell-guided structural analysis using cryo-ET. We analyze the translational landscapes of individual neurons and find distinct structural characteristics and spatial networks among ribosomes from different electrophysiological clusters. Our results highlight the importance of the correlation between the electrophysiological properties and molecular structures.
相关电压成像和低温电子断层扫描连接神经元活动和分子结构。
由于时空分子网络的动态变化,神经元表现出不同的电生理特性。原位冷冻电子断层扫描(cryo-ET)为细胞内大分子复合物的高分辨率可视化提供了优势。虽然与荧光标记的相关性允许冷冻et靶向特定的细胞区域,但它不能充分反映异质神经元的电生理特性。为了将高分辨率分子成像与单个神经元的电生理特性相结合,我们开发了一种相关电压成像和冷冻et (CoVET)技术。电压成像的非破坏性特性与cryo-ET兼容,使神经元电生理和分子结构之间的直接关联成为可能。神经元基于它们的电生理特性聚类,允许使用cryo-ET进行单细胞引导结构分析。我们分析了单个神经元的翻译景观,发现不同电生理簇核糖体之间的不同结构特征和空间网络。我们的结果强调了电生理特性与分子结构之间相关性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信