Near-Field Mapping and Modulation of Dark Exciton-Plasmon Hybrid States on Planar Open Cavity.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-23 DOI:10.1021/acsnano.5c08684
Jianqiao Zhao,Zhaoxuan Zhang,Yihang Fan,Xiaotian Xue,Yunhan Hu,Haodong Zhong,Wangyang Fu,Weipeng Wang,Zhengjun Zhang
{"title":"Near-Field Mapping and Modulation of Dark Exciton-Plasmon Hybrid States on Planar Open Cavity.","authors":"Jianqiao Zhao,Zhaoxuan Zhang,Yihang Fan,Xiaotian Xue,Yunhan Hu,Haodong Zhong,Wangyang Fu,Weipeng Wang,Zhengjun Zhang","doi":"10.1021/acsnano.5c08684","DOIUrl":null,"url":null,"abstract":"The modulation of excitons via coupling with plasmon polaritons represents a crucial approach for controlling light-matter interactions in nanophotonics. However, nanoscale characterization and modulation of dark exciton-plasmon hybrid states remain largely unexplored. In this study, we demonstrate a near-field approach for probing and modulating dark exciton-plasmon hybrid states through planar plasmonic nanostructures at room temperature. The designed meta-structure from the hole array on Au films generates surface plasmon polariton (SPP) interference hotspots with precisely controlled out-of-plane electric fields, enabling direct access to dark exciton and coupled states in monolayer WSe2. By integrating transmission-mode scanning near-field optical microscopy with in situ photoluminescence spectroscopy, we achieve simultaneous spatial mapping and spectral characterization of dark exciton-SPP hybrid states. We further propose the \"quantitative modulation via spacer thickness\" theory and approach, which quantifies the system's ultimate coupling capability and enables precise control over both the coupling strength and relative luminescence intensity of dark excitons. Our stress-free planar open cavity design provides a simple yet versatile platform for scalable excitonic devices, such as on-chip lasers and valleytronic systems. The modulation approach enables the multichannel excitonic information processing, which sets the foundation for advanced photonic devices, including optical switches, computing elements, and hybrid integrated circuits.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"201 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c08684","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation of excitons via coupling with plasmon polaritons represents a crucial approach for controlling light-matter interactions in nanophotonics. However, nanoscale characterization and modulation of dark exciton-plasmon hybrid states remain largely unexplored. In this study, we demonstrate a near-field approach for probing and modulating dark exciton-plasmon hybrid states through planar plasmonic nanostructures at room temperature. The designed meta-structure from the hole array on Au films generates surface plasmon polariton (SPP) interference hotspots with precisely controlled out-of-plane electric fields, enabling direct access to dark exciton and coupled states in monolayer WSe2. By integrating transmission-mode scanning near-field optical microscopy with in situ photoluminescence spectroscopy, we achieve simultaneous spatial mapping and spectral characterization of dark exciton-SPP hybrid states. We further propose the "quantitative modulation via spacer thickness" theory and approach, which quantifies the system's ultimate coupling capability and enables precise control over both the coupling strength and relative luminescence intensity of dark excitons. Our stress-free planar open cavity design provides a simple yet versatile platform for scalable excitonic devices, such as on-chip lasers and valleytronic systems. The modulation approach enables the multichannel excitonic information processing, which sets the foundation for advanced photonic devices, including optical switches, computing elements, and hybrid integrated circuits.
平面开腔暗激子-等离子体杂化态的近场映射与调制。
在纳米光子学中,激子与等离子激元的耦合调制是控制光-物质相互作用的重要途径。然而,暗激子-等离子体杂化态的纳米级表征和调制在很大程度上仍未被探索。在这项研究中,我们展示了一种在室温下通过平面等离子体纳米结构探测和调制暗激子-等离子体杂化态的近场方法。设计的Au薄膜上的空穴阵列元结构产生具有精确控制的面外电场的表面等离子激元(SPP)干涉热点,可以直接进入单层WSe2中的暗激子和耦合态。通过将透射模式扫描近场光学显微镜与原位光致发光光谱相结合,我们实现了暗激子- spp杂化态的同步空间映射和光谱表征。我们进一步提出了“间隔层厚度定量调制”的理论和方法,该理论和方法量化了系统的最终耦合能力,并能够精确控制耦合强度和暗激子的相对发光强度。我们的无应力平面开腔设计为可扩展的激子器件提供了一个简单而通用的平台,例如片上激光器和谷电子系统。调制方法实现了多通道激子信息处理,为先进的光子器件,包括光开关、计算元件和混合集成电路奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信