Integrated Piezoelectric Vibration and In Situ Force Sensing for Low-Trauma Tissue Penetration.

IF 18.1 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2025-10-21 eCollection Date: 2025-01-01 DOI:10.34133/cbsystems.0417
Bingze He, Yao Guo, Guangzhong Yang
{"title":"Integrated Piezoelectric Vibration and In Situ Force Sensing for Low-Trauma Tissue Penetration.","authors":"Bingze He, Yao Guo, Guangzhong Yang","doi":"10.34133/cbsystems.0417","DOIUrl":null,"url":null,"abstract":"<p><p>Precision-controlled microscale manipulation tasks-including neural probe implantation, ophthalmic surgery, and cell membrane puncture-often involve minimally invasive membrane penetration techniques with real-time force feedback to minimize tissue trauma. This imposes rigorous design requirements on the corresponding miniaturized instruments with robotic assistance. This paper proposes an integrated piezoelectric module (IPEM) that combines high-frequency vibration-assisted penetration with real-time in situ force sensing. The IPEM features a compact piezoelectric actuator integrated with a central tungsten probe, generating axial micro-vibration (4,652 Hz) to enable smooth tissue penetration while simultaneously measuring contact and penetration forces via the piezoelectric effect. Extensive experiments were conducted to validate the effectiveness and efficacy of the proposed IPEM. Both static and dynamic force-sensing tests demonstrate the linearity, sensitivity (9.3 mV/mN), and accuracy (mean absolute error < 0.3 mN, mean absolute percentage error < 1%) of the embedded sensing unit. In gelatin phantom tests, the module reduced puncture and insertion forces upon activation of vibration. In vivo experiments in mouse brains further confirmed that the system could reduce penetration resistance (from an average of 11.67 mN without vibration to 7.8 mN with vibration, decreased by 33%) through the pia mater and accurately mimic the electrode implantation-detachment sequence, leaving a flexible electrode embedded with minimal trauma. This work establishes a new paradigm for smart surgical instruments by integrating a compact actuator-sensor design with real-time in situ force feedback capabilities, with immediate applications in brain-machine interfaces and microsurgical robotics.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0417"},"PeriodicalIF":18.1000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12538090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precision-controlled microscale manipulation tasks-including neural probe implantation, ophthalmic surgery, and cell membrane puncture-often involve minimally invasive membrane penetration techniques with real-time force feedback to minimize tissue trauma. This imposes rigorous design requirements on the corresponding miniaturized instruments with robotic assistance. This paper proposes an integrated piezoelectric module (IPEM) that combines high-frequency vibration-assisted penetration with real-time in situ force sensing. The IPEM features a compact piezoelectric actuator integrated with a central tungsten probe, generating axial micro-vibration (4,652 Hz) to enable smooth tissue penetration while simultaneously measuring contact and penetration forces via the piezoelectric effect. Extensive experiments were conducted to validate the effectiveness and efficacy of the proposed IPEM. Both static and dynamic force-sensing tests demonstrate the linearity, sensitivity (9.3 mV/mN), and accuracy (mean absolute error < 0.3 mN, mean absolute percentage error < 1%) of the embedded sensing unit. In gelatin phantom tests, the module reduced puncture and insertion forces upon activation of vibration. In vivo experiments in mouse brains further confirmed that the system could reduce penetration resistance (from an average of 11.67 mN without vibration to 7.8 mN with vibration, decreased by 33%) through the pia mater and accurately mimic the electrode implantation-detachment sequence, leaving a flexible electrode embedded with minimal trauma. This work establishes a new paradigm for smart surgical instruments by integrating a compact actuator-sensor design with real-time in situ force feedback capabilities, with immediate applications in brain-machine interfaces and microsurgical robotics.

集成压电振动和原位力传感的低创伤组织穿透。
精确控制的微尺度操作任务——包括神经探针植入、眼科手术和细胞膜穿刺——通常涉及具有实时力反馈的微创膜穿透技术,以最大限度地减少组织损伤。这对具有机器人辅助的相应小型化仪器提出了严格的设计要求。本文提出了一种将高频振动辅助穿透与实时原位力传感相结合的集成压电模块(IPEM)。IPEM的特点是一个紧凑的压电驱动器集成了一个中央钨探针,产生轴向微振动(4,652 Hz),使组织顺利穿透,同时通过压电效应测量接触和穿透力。进行了大量的实验来验证所提出的IPEM的有效性。静态和动态力传感测试均证明了嵌入式传感单元的线性度、灵敏度(9.3 mV/mN)和精度(平均绝对误差< 0.3 mN,平均绝对百分比误差< 1%)。在明胶模体测试中,该模块在振动激活后减少了穿刺和插入力。小鼠脑内实验进一步证实,该系统可降低穿过软脑膜的穿透阻力(从无振动时的平均11.67 mN降至有振动时的7.8 mN,降低33%),并能准确模拟电极植入-剥离的过程,使柔性电极嵌入的损伤最小。这项工作通过集成具有实时原位力反馈能力的紧凑型致动器-传感器设计,建立了智能手术器械的新范例,可立即应用于脑机接口和显微外科机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信