Field-resilient supercurrent diode in a multiferroic Josephson junction.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hung-Yu Yang, Joseph J Cuozzo, Anand Johnson Bokka, Gang Qiu, Christopher Eckberg, Yanfeng Lyu, Shuyuan Huyan, Ching-Wu Chu, Kenji Watanabe, Takashi Taniguchi, Kang L Wang
{"title":"Field-resilient supercurrent diode in a multiferroic Josephson junction.","authors":"Hung-Yu Yang, Joseph J Cuozzo, Anand Johnson Bokka, Gang Qiu, Christopher Eckberg, Yanfeng Lyu, Shuyuan Huyan, Ching-Wu Chu, Kenji Watanabe, Takashi Taniguchi, Kang L Wang","doi":"10.1038/s41467-025-63698-3","DOIUrl":null,"url":null,"abstract":"<p><p>The research on supercurrent diodes has surged rapidly due to their potential applications in electronic circuits at cryogenic temperatures. To unlock this functionality, it is essential to find supercurrent diodes that can work consistently at zero magnetic field and under ubiquitous stray fields generated in electronic circuits. However, a supercurrent diode with robust field tolerance is currently lacking. Here, we demonstrate a field-resilient supercurrent diode by incorporating a 2D multiferroic material into a Josephson junction, and observed a pronounced supercurrent diode effect at zero magnetic field. More importantly, the supercurrent rectification persists over a wide and bipolar magnetic field range beyond industrial standards for field tolerance. By theoretically modeling a multiferroic Josephson junction, we unveil that the interplay between spin-orbit coupling and multiferroicity underlies the unusual field resilience of the observed diode effect. This work introduces multiferroic Josephson junctions as a new field-resilient superconducting device for cryogenic electronics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9287"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63698-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The research on supercurrent diodes has surged rapidly due to their potential applications in electronic circuits at cryogenic temperatures. To unlock this functionality, it is essential to find supercurrent diodes that can work consistently at zero magnetic field and under ubiquitous stray fields generated in electronic circuits. However, a supercurrent diode with robust field tolerance is currently lacking. Here, we demonstrate a field-resilient supercurrent diode by incorporating a 2D multiferroic material into a Josephson junction, and observed a pronounced supercurrent diode effect at zero magnetic field. More importantly, the supercurrent rectification persists over a wide and bipolar magnetic field range beyond industrial standards for field tolerance. By theoretically modeling a multiferroic Josephson junction, we unveil that the interplay between spin-orbit coupling and multiferroicity underlies the unusual field resilience of the observed diode effect. This work introduces multiferroic Josephson junctions as a new field-resilient superconducting device for cryogenic electronics.

多铁Josephson结中的场弹性超电流二极管。
由于超导二极管在低温电子电路中的潜在应用,其研究迅速发展。为了解锁这一功能,必须找到能够在零磁场和电子电路中产生的无处不在的杂散场下持续工作的超导二极管。然而,目前缺乏具有强磁场容限的超电流二极管。在这里,我们通过将二维多铁性材料结合到约瑟夫森结中,展示了一个场弹性超电流二极管,并观察到零磁场下明显的超电流二极管效应。更重要的是,超电流整流持续在一个宽和双极磁场范围超过工业标准的场公差。通过对多铁性约瑟夫森结的理论建模,我们揭示了自旋轨道耦合和多铁性之间的相互作用是观察到的二极管效应不寻常的场弹性的基础。本文介绍了多铁约瑟夫森结作为低温电子领域的一种新型场弹性超导器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信