Katerina Kraft, Sedona E Murphy, Matthew G Jones, Quanming Shi, Aarohi Bhargava-Shah, Christy Luong, King L Hung, Britney J He, Rui Li, Seung Kuk Park, Michael T Montgomery, Natasha E Weiser, Yanbo Wang, Jens Luebeck, Vineet Bafna, Jef D Boeke, Paul S Mischel, Alistair N Boettiger, Howard Y Chang
{"title":"Enhancer activation from transposable elements in extrachromosomal DNA.","authors":"Katerina Kraft, Sedona E Murphy, Matthew G Jones, Quanming Shi, Aarohi Bhargava-Shah, Christy Luong, King L Hung, Britney J He, Rui Li, Seung Kuk Park, Michael T Montgomery, Natasha E Weiser, Yanbo Wang, Jens Luebeck, Vineet Bafna, Jef D Boeke, Paul S Mischel, Alistair N Boettiger, Howard Y Chang","doi":"10.1038/s41556-025-01788-6","DOIUrl":null,"url":null,"abstract":"<p><p>Extrachromosomal DNA (ecDNA) drives oncogene amplification and intratumoural heterogeneity in aggressive cancers. While transposable element reactivation is common in cancer, its role on ecDNA remains unexplored. Here we map the 3D architecture of MYC-amplified ecDNA in colorectal cancer cells and identify 68 ecDNA-interacting elements-genomic loci enriched for transposable elements that are frequently integrated onto ecDNA. We focus on an L1M4a1#LINE/L1 fragment co-amplified with MYC, which functions only in the ecDNA-amplified context. Using CRISPR-CATCH, CRISPR interference and reporter assays, we confirm its presence on ecDNA, enhancer activity and essentiality for cancer cell fitness. These findings reveal that repetitive elements can be reactivated and co-opted as functional rather than inactive sequences on ecDNA, potentially driving oncogene expression and tumour evolution. Our study uncovers a mechanism by which ecDNA harnesses repetitive elements to shape cancer phenotypes, with implications for diagnosis and therapy.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":" ","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01788-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extrachromosomal DNA (ecDNA) drives oncogene amplification and intratumoural heterogeneity in aggressive cancers. While transposable element reactivation is common in cancer, its role on ecDNA remains unexplored. Here we map the 3D architecture of MYC-amplified ecDNA in colorectal cancer cells and identify 68 ecDNA-interacting elements-genomic loci enriched for transposable elements that are frequently integrated onto ecDNA. We focus on an L1M4a1#LINE/L1 fragment co-amplified with MYC, which functions only in the ecDNA-amplified context. Using CRISPR-CATCH, CRISPR interference and reporter assays, we confirm its presence on ecDNA, enhancer activity and essentiality for cancer cell fitness. These findings reveal that repetitive elements can be reactivated and co-opted as functional rather than inactive sequences on ecDNA, potentially driving oncogene expression and tumour evolution. Our study uncovers a mechanism by which ecDNA harnesses repetitive elements to shape cancer phenotypes, with implications for diagnosis and therapy.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology