Mathew Joshy, Linshan Liu, Praveen Dassanayake, Marco Aiello, Angelica Di Cecca, Carlo Cavaliere, Udunna Anazodo, Elizabeth Finger, Keith St Lawrence
{"title":"Disrupted Coupling Between Cerebral Glucose Metabolism and Intrinsic Functional Connectivity: A Hybrid PET/fMRI Study on Frontotemporal Dementia.","authors":"Mathew Joshy, Linshan Liu, Praveen Dassanayake, Marco Aiello, Angelica Di Cecca, Carlo Cavaliere, Udunna Anazodo, Elizabeth Finger, Keith St Lawrence","doi":"10.1002/hbm.70388","DOIUrl":null,"url":null,"abstract":"<p><p>It is increasingly established that the organization of the brain into functional resting-state networks allows efficient integration and processing of information. Functional hubs anchoring such networks are characterized by a high degree of communication, which relies on efficient utilization of glucose. Alzheimer's disease (AD) disrupts the balance between glucose metabolism and intrinsic functional connectivity (FC). We hypothesized that this critical coupling would also be weakened in frontotemporal dementia (FTD), particularly within the salience network, given its association with the disease. Towards this goal, behavioral variant FTD (bvFTD) patients (n = 21) and healthy participants (n = 18) underwent simultaneous FDG-PET and functional MRI imaging in a hybrid PET/MR system, with an additional cohort completing the MRI component only. PET images were converted into standardized uptake value ratios (SUVr), and local FC was quantified using regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF), two metrics that have been demonstrated to be related to FDG-PET uptake. The interplay between FC and glucose metabolism was investigated within the salience and default mode networks. The bvFTD group showed network-level functional breakdown and significantly weakened metabolism/FC coupling, especially in the dorsal anterior insula and posterior cingulate cortex. Importantly, reduced coupling in the posterior cingulate cortex was associated with cognitive and behavioral symptoms in patients. Though significant, the reduction in whole-brain metabolic/FC coupling in bvFTD was not as strong as reported previously for AD. These results highlight the vulnerability of functional hubs to neurodegenerative disease. Aberrant regional disruptions in the coupling between metabolism and neuronal activity may drive network-level dysfunction and contribute to functional impairments characteristic of the disease.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 15","pages":"e70388"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70388","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
It is increasingly established that the organization of the brain into functional resting-state networks allows efficient integration and processing of information. Functional hubs anchoring such networks are characterized by a high degree of communication, which relies on efficient utilization of glucose. Alzheimer's disease (AD) disrupts the balance between glucose metabolism and intrinsic functional connectivity (FC). We hypothesized that this critical coupling would also be weakened in frontotemporal dementia (FTD), particularly within the salience network, given its association with the disease. Towards this goal, behavioral variant FTD (bvFTD) patients (n = 21) and healthy participants (n = 18) underwent simultaneous FDG-PET and functional MRI imaging in a hybrid PET/MR system, with an additional cohort completing the MRI component only. PET images were converted into standardized uptake value ratios (SUVr), and local FC was quantified using regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF), two metrics that have been demonstrated to be related to FDG-PET uptake. The interplay between FC and glucose metabolism was investigated within the salience and default mode networks. The bvFTD group showed network-level functional breakdown and significantly weakened metabolism/FC coupling, especially in the dorsal anterior insula and posterior cingulate cortex. Importantly, reduced coupling in the posterior cingulate cortex was associated with cognitive and behavioral symptoms in patients. Though significant, the reduction in whole-brain metabolic/FC coupling in bvFTD was not as strong as reported previously for AD. These results highlight the vulnerability of functional hubs to neurodegenerative disease. Aberrant regional disruptions in the coupling between metabolism and neuronal activity may drive network-level dysfunction and contribute to functional impairments characteristic of the disease.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.