Reconstructing human pancreatic gene networks enhances stem cell-derived β cell induction.

IF 8.7 1区 生物学 Q1 CELL BIOLOGY
Xin-Xin Yu, Xin Wang, Liu Yang, Mao-Yang He, Xi Wang, Yi-Ning Wang, Ke-Ran Li, Cheng-Ran Xu
{"title":"Reconstructing human pancreatic gene networks enhances stem cell-derived β cell induction.","authors":"Xin-Xin Yu, Xin Wang, Liu Yang, Mao-Yang He, Xi Wang, Yi-Ning Wang, Ke-Ran Li, Cheng-Ran Xu","doi":"10.1016/j.devcel.2025.09.018","DOIUrl":null,"url":null,"abstract":"<p><p>Generating functional β cells from stem cells remains a major challenge in regenerative medicine due to the incomplete recapitulation of human pancreatic development in vitro. By integrating newly generated human single-cell RNA sequencing (RNA-seq) datasets (Carnegie stages 10-15) with existing data, we mapped gene co-expression networks (GCNs) underlying pancreatic lineage progression in humans and mice. We observed significant species-specific differences in GCN robustness and dorsal-ventral propensity for progenitor development. Benchmarking three common differentiation protocols against the in vivo datasets showed that they fail to reproduce human-like GCNs, thereby limiting stem cell-derived insulin-secreting β cell (SC-β cell) induction efficiency. To address this, we developed a protocol that reconstructs human pancreatic GCN dynamics, shortens the induction period to 19 days, and achieves up to ∼70% β cell content. SC-islets generated with this method significantly alleviated diabetic symptoms and maintained mature β cell function after transplantation in mice. These findings bridge in vivo mechanisms and in vitro differentiation, advancing stem cell-based therapies.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.09.018","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Generating functional β cells from stem cells remains a major challenge in regenerative medicine due to the incomplete recapitulation of human pancreatic development in vitro. By integrating newly generated human single-cell RNA sequencing (RNA-seq) datasets (Carnegie stages 10-15) with existing data, we mapped gene co-expression networks (GCNs) underlying pancreatic lineage progression in humans and mice. We observed significant species-specific differences in GCN robustness and dorsal-ventral propensity for progenitor development. Benchmarking three common differentiation protocols against the in vivo datasets showed that they fail to reproduce human-like GCNs, thereby limiting stem cell-derived insulin-secreting β cell (SC-β cell) induction efficiency. To address this, we developed a protocol that reconstructs human pancreatic GCN dynamics, shortens the induction period to 19 days, and achieves up to ∼70% β cell content. SC-islets generated with this method significantly alleviated diabetic symptoms and maintained mature β cell function after transplantation in mice. These findings bridge in vivo mechanisms and in vitro differentiation, advancing stem cell-based therapies.

重建人类胰腺基因网络增强干细胞来源的β细胞诱导。
由于体外人类胰腺发育的不完整再现,从干细胞中生成功能性β细胞仍然是再生医学的主要挑战。通过整合新生成的人类单细胞RNA测序(RNA-seq)数据集(卡内基阶段10-15)与现有数据,我们绘制了人类和小鼠胰腺谱系进展的基因共表达网络(GCNs)。我们观察到GCN稳健性和祖细胞发育的背-腹侧倾向的显著物种特异性差异。针对体内数据集对三种常见分化方案进行基准测试表明,它们无法复制出类似人类的GCNs,从而限制了干细胞衍生的胰岛素分泌β细胞(SC-β细胞)的诱导效率。为了解决这个问题,我们开发了一种重建人类胰腺GCN动力学的方案,将诱导期缩短至19天,并达到高达70%的β细胞含量。该方法制备的sc -胰岛在移植后可显著缓解糖尿病症状,维持成熟β细胞功能。这些发现在体内机制和体外分化之间架起了桥梁,推动了基于干细胞的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信