{"title":"Therapeutic Horizons for Parkinson's Disease: Current Relevance of PNA5 in Memory and Cognition.","authors":"Kousik Maparu, Dhrita Chatterjee, Nileshwar Kalia, Romanpreet Kaur, Shamsher Singh","doi":"10.2174/0113892037389890250925014102","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized primarily by the progressive loss of dopaminergic neurons in the substantia nigra and the pathological aggregation of α-synuclein. While some genetic and environmental factors contribute to the development of PD, emerging evidence suggests that specific proteins and molecules may have the potential to slow down, reverse, or mitigate the progression of the disease. Recently, the neuroprotective potential of peptide nucleic acid 5 (PNA5) has garnered attention for its ability to restore cognitive functions in PD. PNA5 is an angiotensin (1-7) agonist peptide molecule that targets α-synuclein mRNA to inhibit its translation and aggregation. Key areas explored include the role of PNA5 in reducing toxic α-synuclein oligomers and fibrils, modulating neuroinflammation, preserving mitochondrial function, and harnessing molecular chaperones and angiotensin-MAS receptor signalling pathways for cellular homeostasis. This review emphasizes the significance of PNA5 in addressing the unmet needs of PD treatment, particularly in the areas of memory and cognition. By targeting the molecular basis of cognitive decline, PNA5 represents a transformative candidate for disease-modifying therapy that could revolutionize approaches to treating neurodegenerative disorders. Future studies should concentrate on establishing delivery methods, evaluating long-term efficacy, and addressing safety concerns.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037389890250925014102","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized primarily by the progressive loss of dopaminergic neurons in the substantia nigra and the pathological aggregation of α-synuclein. While some genetic and environmental factors contribute to the development of PD, emerging evidence suggests that specific proteins and molecules may have the potential to slow down, reverse, or mitigate the progression of the disease. Recently, the neuroprotective potential of peptide nucleic acid 5 (PNA5) has garnered attention for its ability to restore cognitive functions in PD. PNA5 is an angiotensin (1-7) agonist peptide molecule that targets α-synuclein mRNA to inhibit its translation and aggregation. Key areas explored include the role of PNA5 in reducing toxic α-synuclein oligomers and fibrils, modulating neuroinflammation, preserving mitochondrial function, and harnessing molecular chaperones and angiotensin-MAS receptor signalling pathways for cellular homeostasis. This review emphasizes the significance of PNA5 in addressing the unmet needs of PD treatment, particularly in the areas of memory and cognition. By targeting the molecular basis of cognitive decline, PNA5 represents a transformative candidate for disease-modifying therapy that could revolutionize approaches to treating neurodegenerative disorders. Future studies should concentrate on establishing delivery methods, evaluating long-term efficacy, and addressing safety concerns.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.