Performance of High Temperature Polymer Electrolyte Membrane Fuel Cells as a Function of Polybenzimidazole Membrane Modification.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-21 DOI:10.1002/cssc.202501575
Julia Müller-Hülstede, Dana Schonvogel, Julian Büsselmann, Jörg Belack, Jurica Vidakovic, Md Raziun B Mamtaz, Quentin Meyer, Chuan Zhao, Peter Wagner
{"title":"Performance of High Temperature Polymer Electrolyte Membrane Fuel Cells as a Function of Polybenzimidazole Membrane Modification.","authors":"Julia Müller-Hülstede, Dana Schonvogel, Julian Büsselmann, Jörg Belack, Jurica Vidakovic, Md Raziun B Mamtaz, Quentin Meyer, Chuan Zhao, Peter Wagner","doi":"10.1002/cssc.202501575","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer electrolyte membranes (PEM) of high-temperature PEM fuel cells (HT-PEMFC) are commonly based on phosphoric acid-doped polybenzimidazole (PBI). However, these membranes suffer from acid leaching and limited mechanical stability. In this study, five different PBI membrane modifications, including inorganic fillers (SiC, Si<sub>3</sub>N<sub>4</sub>, SiO<sub>2</sub>), crosslinking, and high-solid content, are explored to increase the solid content of the membranes (up to 18 wt%), which could potentially increase mechanical stability. All modifications are based on the industrial fabrication process of the commercial Celtec-P membrane to enable direct comparison in HT-PEMFC. HT-PEMFC testing reveal comparable performance to the Celtec standard when incorporating SiC particles with lower membrane resistance. Lowest performance is found for crosslinked and high-solid-based membrane electrode assembly (MEA), which is traced back to acid leaching and increased proton transport resistances. The evaluation of performance under operation with reformate reveal no beneficial effect of the membrane modification. This study helps to implement novel HT-PEM candidates in the industrial fabrication process and provides direct comparison to the already commercialized Celtec technology regarding MEA performances and stabilities.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501575"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501575","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer electrolyte membranes (PEM) of high-temperature PEM fuel cells (HT-PEMFC) are commonly based on phosphoric acid-doped polybenzimidazole (PBI). However, these membranes suffer from acid leaching and limited mechanical stability. In this study, five different PBI membrane modifications, including inorganic fillers (SiC, Si3N4, SiO2), crosslinking, and high-solid content, are explored to increase the solid content of the membranes (up to 18 wt%), which could potentially increase mechanical stability. All modifications are based on the industrial fabrication process of the commercial Celtec-P membrane to enable direct comparison in HT-PEMFC. HT-PEMFC testing reveal comparable performance to the Celtec standard when incorporating SiC particles with lower membrane resistance. Lowest performance is found for crosslinked and high-solid-based membrane electrode assembly (MEA), which is traced back to acid leaching and increased proton transport resistances. The evaluation of performance under operation with reformate reveal no beneficial effect of the membrane modification. This study helps to implement novel HT-PEM candidates in the industrial fabrication process and provides direct comparison to the already commercialized Celtec technology regarding MEA performances and stabilities.

高温聚合物电解质膜燃料电池性能对聚苯并咪唑膜改性的影响。
高温PEM燃料电池(HT-PEMFC)的聚合物电解质膜(PEM)通常是基于磷酸掺杂的聚苯并咪唑(PBI)。然而,这些膜遭受酸浸和有限的机械稳定性。在本研究中,研究了五种不同的PBI膜改性,包括无机填料(SiC, Si3N4, SiO2),交联和高固含量,以增加膜的固含量(高达18 wt%),这可能会增加机械稳定性。所有修改都是基于商用Celtec-P膜的工业制造工艺,以便在HT-PEMFC中进行直接比较。HT-PEMFC测试显示,当加入具有较低膜电阻的SiC颗粒时,其性能与Celtec标准相当。交联和高固体基膜电极组件(MEA)的性能最低,这可以追溯到酸浸和增加的质子传输阻力。经改造后的运行性能评价表明,膜改性效果不佳。这项研究有助于在工业制造过程中实现新型HT-PEM候选材料,并提供了与已经商业化的Celtec技术在MEA性能和稳定性方面的直接比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信