A New Low-Rate Stable Hydrogel Cathode for Aqueous Zn-ion Batteries.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-23 DOI:10.1002/cssc.202501942
Roya Rajabi, Shichen Sun, Jamil Khan, Morgan Stefik, Kevin Huang
{"title":"A New Low-Rate Stable Hydrogel Cathode for Aqueous Zn-ion Batteries.","authors":"Roya Rajabi, Shichen Sun, Jamil Khan, Morgan Stefik, Kevin Huang","doi":"10.1002/cssc.202501942","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous Zn-ion batteries (ZIBs) are attractive candidates for large-scale energy storage owing to the abundance, low cost, and intrinsic safety of Zn metal. However, their practical application is hindered by poor cycle stability, especially at low current densities, due to cathode dissolution and limited electrochemically active sites (EAS). Herein, a hydrogel-based cathode comprising ammonium vanadate, carbon black, and a Zn-ion-conducting carboxymethyl chitosan-acrylamide hydrogel matrix doped with Zn(ClO<sub>4</sub>)<sub>2</sub> is reported. This design establishes a continuous Zn-ion-conducting network, thereby maximizing EAS density throughout the electrode volume. The ZIB with the hydrogel cathode exhibits outstanding cycling stability, with 77% capacity retention after 2000 cycles at 1 A g<sup>-1</sup> and 75% retention after 1400 cycles at 0.5 A g<sup>-1</sup>, far surpassing conventional polyvinylidene fluoride-based cathodes. In addition to retaining high EAS density, the hydrogel matrix also suppresses active material dissolution. These results demonstrate a new strategy for stabilizing ZIB cathodes and advancing long-duration energy storage.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501942"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501942","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-ion batteries (ZIBs) are attractive candidates for large-scale energy storage owing to the abundance, low cost, and intrinsic safety of Zn metal. However, their practical application is hindered by poor cycle stability, especially at low current densities, due to cathode dissolution and limited electrochemically active sites (EAS). Herein, a hydrogel-based cathode comprising ammonium vanadate, carbon black, and a Zn-ion-conducting carboxymethyl chitosan-acrylamide hydrogel matrix doped with Zn(ClO4)2 is reported. This design establishes a continuous Zn-ion-conducting network, thereby maximizing EAS density throughout the electrode volume. The ZIB with the hydrogel cathode exhibits outstanding cycling stability, with 77% capacity retention after 2000 cycles at 1 A g-1 and 75% retention after 1400 cycles at 0.5 A g-1, far surpassing conventional polyvinylidene fluoride-based cathodes. In addition to retaining high EAS density, the hydrogel matrix also suppresses active material dissolution. These results demonstrate a new strategy for stabilizing ZIB cathodes and advancing long-duration energy storage.

一种新型低倍率稳定的水凝胶锌离子电池阴极。
含水锌离子电池由于其丰富、低成本和本质安全等优点,成为大规模储能的理想选择。然而,它们的实际应用受到循环稳定性差的阻碍,特别是在低电流密度下,由于阴极溶解和有限的电化学活性位点(EAS)。本文报道了一种由钒酸铵、炭黑和掺杂Zn(ClO4)2的导电锌离子的羧甲基壳聚糖-丙烯酰胺水凝胶基质组成的水凝胶阴极。该设计建立了一个连续的锌离子导电网络,从而最大限度地提高了整个电极体积的EAS密度。具有水凝胶阴极的ZIB具有出色的循环稳定性,在1 A g-1下循环2000次后容量保持率为77%,在0.5 A g-1下循环1400次后容量保持率为75%,远远超过传统的聚偏氟乙烯基阴极。除了保持高EAS密度外,水凝胶基质还抑制活性物质的溶解。这些结果表明了稳定ZIB阴极和推进长时间储能的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信