Numerical simulation and optimization of BaZrSe3/ZnS heterojunction solar cells: achieving high performance

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-21 DOI:10.1039/D5RA05711F
Elsammani Ali Shokralla, Arslan Ashfaq, Ubaid Ur Rehman, Hind Albalawi, Zahra Bayhan, Sarah A. Alsalhi, Shoug M. Alghamdi and M. Musa Saad H.-E.
{"title":"Numerical simulation and optimization of BaZrSe3/ZnS heterojunction solar cells: achieving high performance","authors":"Elsammani Ali Shokralla, Arslan Ashfaq, Ubaid Ur Rehman, Hind Albalawi, Zahra Bayhan, Sarah A. Alsalhi, Shoug M. Alghamdi and M. Musa Saad H.-E.","doi":"10.1039/D5RA05711F","DOIUrl":null,"url":null,"abstract":"<p >In this work, a ZnO:Al/ZnO/ZnS/BaZrSe<small><sub>3</sub></small>/Au heterojunction solar cell was numerically investigated using SCAPS-1D to optimize its structural and electronic parameters for high photovoltaic performance. The effects of absorber thickness (50 nm–6.0 μm), buffer layer thickness (10–100 nm), doping densities, defect states, operating temperature, and back metal contacts were systematically studied. The results revealed that increasing the BaZrSe<small><sub>3</sub></small> absorber thickness enhanced the short-circuit current density (<em>J</em><small><sub>sc</sub></small>) due to improved light absorption, with an optimum thickness of 2.0 μm balancing carrier generation and recombination. The ZnS buffer layer exhibited optimum performance at 20 nm, ensuring efficient charge transfer without increasing resistive losses. The acceptor doping concentration in BaZrSe<small><sub>3</sub></small> strongly influenced the device properties, with <em>N</em><small><sub>A</sub></small> = 10<small><sup>18</sup></small> cm<small><sup>−3</sup></small> yielding the maximum PCE of 22.77%. Similarly, an optimized donor doping density of 10<small><sup>19</sup></small> cm<small><sup>−3</sup></small> in the buffer enhanced carrier extraction. Defect density analysis showed that PCE remained stable up to <em>N</em><small><sub>T</sub></small> = 10<small><sup>14</sup></small> cm<small><sup>−3</sup></small>, beyond which recombination dominated, reducing efficiency. Temperature-dependent simulations indicated a decline in PCE from 22.92% at 300 K to 17.87% at 360 K due to enhanced carrier recombination. Finally, the choice of back contact significantly affected performance, with a high work-function metal (5.9 eV) achieving superior results, including PCE = 29.46%, <em>V</em><small><sub>oc</sub></small> = 0.7528 V, <em>J</em><small><sub>sc</sub></small> = 46.38 mA cm<small><sup>−2</sup></small>, and FF = 84.37%. These results highlight the promising potential of BaZrSe<small><sub>3</sub></small> as a lead free absorber material for next-generation thin film solar cells, where optimization of thickness, doping, and contact engineering play a crucial role in maximizing device efficiency.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 47","pages":" 39898-39908"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12538386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra05711f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a ZnO:Al/ZnO/ZnS/BaZrSe3/Au heterojunction solar cell was numerically investigated using SCAPS-1D to optimize its structural and electronic parameters for high photovoltaic performance. The effects of absorber thickness (50 nm–6.0 μm), buffer layer thickness (10–100 nm), doping densities, defect states, operating temperature, and back metal contacts were systematically studied. The results revealed that increasing the BaZrSe3 absorber thickness enhanced the short-circuit current density (Jsc) due to improved light absorption, with an optimum thickness of 2.0 μm balancing carrier generation and recombination. The ZnS buffer layer exhibited optimum performance at 20 nm, ensuring efficient charge transfer without increasing resistive losses. The acceptor doping concentration in BaZrSe3 strongly influenced the device properties, with NA = 1018 cm−3 yielding the maximum PCE of 22.77%. Similarly, an optimized donor doping density of 1019 cm−3 in the buffer enhanced carrier extraction. Defect density analysis showed that PCE remained stable up to NT = 1014 cm−3, beyond which recombination dominated, reducing efficiency. Temperature-dependent simulations indicated a decline in PCE from 22.92% at 300 K to 17.87% at 360 K due to enhanced carrier recombination. Finally, the choice of back contact significantly affected performance, with a high work-function metal (5.9 eV) achieving superior results, including PCE = 29.46%, Voc = 0.7528 V, Jsc = 46.38 mA cm−2, and FF = 84.37%. These results highlight the promising potential of BaZrSe3 as a lead free absorber material for next-generation thin film solar cells, where optimization of thickness, doping, and contact engineering play a crucial role in maximizing device efficiency.

Abstract Image

BaZrSe3/ZnS异质结太阳能电池的数值模拟与优化:实现高性能。
本文利用SCAPS-1D对ZnO:Al/ZnO/ZnS/BaZrSe3/Au异质结太阳能电池进行了数值研究,以优化其结构和电子参数以获得更高的光伏性能。系统地研究了吸收层厚度(50 nm ~ 6.0 μm)、缓冲层厚度(10 ~ 100 nm)、掺杂密度、缺陷态、工作温度和背面金属触点等因素的影响。结果表明,增加BaZrSe3吸收层厚度可以提高短路电流密度(J sc),以达到平衡载流子生成和复合的最佳厚度为2.0 μm。ZnS缓冲层在20nm处表现出最佳性能,保证了有效的电荷转移而不增加电阻损失。BaZrSe3中受体掺杂浓度对器件性能影响较大,当na = 1018 cm-3时,器件的最大PCE为22.77%。同样,优化后的缓冲液中供体掺杂密度为1019 cm-3,可以增强载流子的提取。缺陷密度分析表明,PCE在nt = 1014 cm-3时保持稳定,超过该值后,PCE以重组为主,效率降低。温度相关的模拟表明,由于载流子复合增强,PCE从300 K时的22.92%下降到360 K时的17.87%。最后,背触点的选择对性能有显著影响,高工作功能金属(5.9 eV)的PCE = 29.46%, V oc = 0.7528 V, jsc = 46.38 mA cm-2, FF = 84.37%。这些结果突出了BaZrSe3作为下一代薄膜太阳能电池的无铅吸收材料的巨大潜力,其中厚度、掺杂和接触工程的优化在最大化器件效率方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信