{"title":"Enhanced transport behavior of small molecules in polymer solutions.","authors":"Goga Ram, Rajarshi Guha, Nirmalya Bachhar","doi":"10.1039/d5sm00765h","DOIUrl":null,"url":null,"abstract":"<p><p>The transport of small molecules in crowded polymeric or biological systems is a complex process with extensive implications for drug delivery, imaging, tracer diffusion, and other biological processes. In this study, we examined an intriguing case where a methylated small molecule, rhodamine 6G (R6G), diffused faster than a similar-sized non-methylated molecule (6-HEX) in an aqueous polyethylene oxide solution, and dramatically enhanced its diffusivity near the dilute-to-semidilute transition. The commonly used universal scaling model cannot explain such phenomena. The experimental diffusivity measurement was performed using fluorescence correlation spectroscopy, and an all-atom molecular dynamics simulation was conducted to estimate theoretical diffusivity. We demonstrate that the degree of hydrophobicity of the dye molecule directly influences the level of non-sticky behavior exhibited by the dye. Using both experiment and simulation, we show that the hydrophilic dye (6-HEX) shows a stronger affinity (sticky molecule) to the polymer chains and moves along with them. Our simulations show two different interconnected local densities of polymer-rich and polymer-lean zones, observed at a length scale of the polymer's radius of gyration. Additionally, near the dilute to semi-dilute transition, the volume fraction of the polymer-rich zone decreases, thereby increasing the volume fraction of the polymer-lean zone. We show that the methylated, hydrophobic dye interacts less with the polymer and traverses through the low-density region, which enhances its diffusivity. This study aids in understanding the transport behavior of small molecules in dilute and semi-dilute polymer solutions and helps identify the concentration regime at which a non-sticky molecule can exhibit enhanced transport behavior.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00765h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The transport of small molecules in crowded polymeric or biological systems is a complex process with extensive implications for drug delivery, imaging, tracer diffusion, and other biological processes. In this study, we examined an intriguing case where a methylated small molecule, rhodamine 6G (R6G), diffused faster than a similar-sized non-methylated molecule (6-HEX) in an aqueous polyethylene oxide solution, and dramatically enhanced its diffusivity near the dilute-to-semidilute transition. The commonly used universal scaling model cannot explain such phenomena. The experimental diffusivity measurement was performed using fluorescence correlation spectroscopy, and an all-atom molecular dynamics simulation was conducted to estimate theoretical diffusivity. We demonstrate that the degree of hydrophobicity of the dye molecule directly influences the level of non-sticky behavior exhibited by the dye. Using both experiment and simulation, we show that the hydrophilic dye (6-HEX) shows a stronger affinity (sticky molecule) to the polymer chains and moves along with them. Our simulations show two different interconnected local densities of polymer-rich and polymer-lean zones, observed at a length scale of the polymer's radius of gyration. Additionally, near the dilute to semi-dilute transition, the volume fraction of the polymer-rich zone decreases, thereby increasing the volume fraction of the polymer-lean zone. We show that the methylated, hydrophobic dye interacts less with the polymer and traverses through the low-density region, which enhances its diffusivity. This study aids in understanding the transport behavior of small molecules in dilute and semi-dilute polymer solutions and helps identify the concentration regime at which a non-sticky molecule can exhibit enhanced transport behavior.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.