Single Photon Emitters in Thin GaAsN Nanowire Tubes Grown on Si.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-23 DOI:10.1021/acsnano.5c12139
Nadine Denis, Akant Sagar Sharma, Didem Dede, Timur Nurmamytov, Salvatore Cianci, Francesca Santangeli, Marco Felici, Victor Boureau, Antonio Polimeni, Silvia Rubini, Anna Fontcuberta I Morral, Marta De Luca
{"title":"Single Photon Emitters in Thin GaAsN Nanowire Tubes Grown on Si.","authors":"Nadine Denis, Akant Sagar Sharma, Didem Dede, Timur Nurmamytov, Salvatore Cianci, Francesca Santangeli, Marco Felici, Victor Boureau, Antonio Polimeni, Silvia Rubini, Anna Fontcuberta I Morral, Marta De Luca","doi":"10.1021/acsnano.5c12139","DOIUrl":null,"url":null,"abstract":"<p><p>III-V nanowire heterostructures can act as sources of single and entangled photons and are enabling technologies for on-chip applications in future quantum photonic devices. The peculiar geometry of nanowires allows to integrate lattice-mismatched components beyond the limits of planar epilayers and to create radially and axially confined quantum structures. Here, we report the plasma-assisted molecular beam epitaxy growth of thin GaAs/GaAsN/GaAs core-multishell nanowires monolithically integrated on Si (111) substrates, overcoming the challenges caused by the low solubility of N and a high lattice mismatch. The nanowires have a GaAsN shell of 10 nm containing 2.7% N, which reduces the GaAs bandgap drastically by 400 meV. They have a symmetric core-shell structure with sharp boundaries and a defect-free zincblende phase. The high structural quality reflects in their excellent optical properties. Local N% fluctuations and radial confinement give rise to quantum dot-like states in the thin GaAsN shell, which display remarkable single photon emission with a second-order autocorrelation function at zero time delay as low as 0.05 in continuous and in pulsed excitation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c12139","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

III-V nanowire heterostructures can act as sources of single and entangled photons and are enabling technologies for on-chip applications in future quantum photonic devices. The peculiar geometry of nanowires allows to integrate lattice-mismatched components beyond the limits of planar epilayers and to create radially and axially confined quantum structures. Here, we report the plasma-assisted molecular beam epitaxy growth of thin GaAs/GaAsN/GaAs core-multishell nanowires monolithically integrated on Si (111) substrates, overcoming the challenges caused by the low solubility of N and a high lattice mismatch. The nanowires have a GaAsN shell of 10 nm containing 2.7% N, which reduces the GaAs bandgap drastically by 400 meV. They have a symmetric core-shell structure with sharp boundaries and a defect-free zincblende phase. The high structural quality reflects in their excellent optical properties. Local N% fluctuations and radial confinement give rise to quantum dot-like states in the thin GaAsN shell, which display remarkable single photon emission with a second-order autocorrelation function at zero time delay as low as 0.05 in continuous and in pulsed excitation.

在硅上生长的薄砷化镓纳米线管中的单光子发射器。
III-V纳米线异质结构可以作为单光子和纠缠光子的源,是未来量子光子器件片上应用的使能技术。纳米线独特的几何结构使得它可以超越平面薄膜的限制,集成晶格不匹配的组件,并创建径向和轴向受限的量子结构。在这里,我们报道了等离子体辅助的分子束外延生长在Si(111)衬底上单片集成的薄GaAs/GaAsN/GaAs核心多壳纳米线,克服了N的低溶解度和高晶格错配所带来的挑战。该纳米线具有10 nm的GaAsN壳层,含有2.7%的N,可将GaAs带隙大幅降低400 meV。它们具有明显边界的对称核壳结构和无缺陷的锌闪锌矿相。优良的结构质量体现在优异的光学性能上。局域N%涨落和径向约束在薄GaAsN壳层中产生量子点态,在连续激发和脉冲激发下表现出显著的单光子发射和二阶自相关函数,零延时低至0.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信