Nadine Denis, Akant Sagar Sharma, Didem Dede, Timur Nurmamytov, Salvatore Cianci, Francesca Santangeli, Marco Felici, Victor Boureau, Antonio Polimeni, Silvia Rubini, Anna Fontcuberta I Morral, Marta De Luca
{"title":"Single Photon Emitters in Thin GaAsN Nanowire Tubes Grown on Si.","authors":"Nadine Denis, Akant Sagar Sharma, Didem Dede, Timur Nurmamytov, Salvatore Cianci, Francesca Santangeli, Marco Felici, Victor Boureau, Antonio Polimeni, Silvia Rubini, Anna Fontcuberta I Morral, Marta De Luca","doi":"10.1021/acsnano.5c12139","DOIUrl":null,"url":null,"abstract":"<p><p>III-V nanowire heterostructures can act as sources of single and entangled photons and are enabling technologies for on-chip applications in future quantum photonic devices. The peculiar geometry of nanowires allows to integrate lattice-mismatched components beyond the limits of planar epilayers and to create radially and axially confined quantum structures. Here, we report the plasma-assisted molecular beam epitaxy growth of thin GaAs/GaAsN/GaAs core-multishell nanowires monolithically integrated on Si (111) substrates, overcoming the challenges caused by the low solubility of N and a high lattice mismatch. The nanowires have a GaAsN shell of 10 nm containing 2.7% N, which reduces the GaAs bandgap drastically by 400 meV. They have a symmetric core-shell structure with sharp boundaries and a defect-free zincblende phase. The high structural quality reflects in their excellent optical properties. Local N% fluctuations and radial confinement give rise to quantum dot-like states in the thin GaAsN shell, which display remarkable single photon emission with a second-order autocorrelation function at zero time delay as low as 0.05 in continuous and in pulsed excitation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c12139","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
III-V nanowire heterostructures can act as sources of single and entangled photons and are enabling technologies for on-chip applications in future quantum photonic devices. The peculiar geometry of nanowires allows to integrate lattice-mismatched components beyond the limits of planar epilayers and to create radially and axially confined quantum structures. Here, we report the plasma-assisted molecular beam epitaxy growth of thin GaAs/GaAsN/GaAs core-multishell nanowires monolithically integrated on Si (111) substrates, overcoming the challenges caused by the low solubility of N and a high lattice mismatch. The nanowires have a GaAsN shell of 10 nm containing 2.7% N, which reduces the GaAs bandgap drastically by 400 meV. They have a symmetric core-shell structure with sharp boundaries and a defect-free zincblende phase. The high structural quality reflects in their excellent optical properties. Local N% fluctuations and radial confinement give rise to quantum dot-like states in the thin GaAsN shell, which display remarkable single photon emission with a second-order autocorrelation function at zero time delay as low as 0.05 in continuous and in pulsed excitation.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.