Jiehao Fu, Hongxiang Li, Heng Liu, Peihao Huang, Haiyan Chen, Patrick W. K. Fong, Top Archie Dela Peña, Mingjie Li, Xinhui Lu, Pei Cheng, Zeyun Xiao, Shirong Lu, Gang Li
{"title":"Two-step crystallization modulated through acenaphthene enabling 21% binary organic solar cells and 83.2% fill factor","authors":"Jiehao Fu, Hongxiang Li, Heng Liu, Peihao Huang, Haiyan Chen, Patrick W. K. Fong, Top Archie Dela Peña, Mingjie Li, Xinhui Lu, Pei Cheng, Zeyun Xiao, Shirong Lu, Gang Li","doi":"10.1038/s41560-025-01862-1","DOIUrl":null,"url":null,"abstract":"The crystallization dynamics of non-fullerene acceptors influences the morphology and charge dynamics of the resulting organic solar cells, ultimately determining device performance. However, optimizing the molecular arrangement of donor and acceptor materials within the active layer remains challenging. Here we control the crystallization kinetics of non-fullerene acceptors with a crystallization-regulating agent, acenaphthene. Acenaphthene changes the self-organization of acceptor molecules by inducing a two-step crystallization: it first fixes the packing motif of the acceptor and then refines the crystallized framework, leading to highly oriented acceptors in the active layer. This forms several charge-transport pathways that improve the charge-transport properties of the device. As a result, efficiencies of 20.9% (20.4% certified) and 21% (20.5% certified) are achieved in D18/L8-BO and PM1/L8-BO-X binary organic solar cells, respectively, with a maximum fill factor of 83.2% (82.2% certified). The result is a step forward in the development of organic solar cells. Optimizing the crystallization of the active materials in organic solar cells is challenging. Fu et al. use an acenaphthene additive to induce a two-step crystallization of the non-fullerene acceptor, achieving a certified 20.5% power conversion efficiency.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 10","pages":"1251-1261"},"PeriodicalIF":60.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-025-01862-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The crystallization dynamics of non-fullerene acceptors influences the morphology and charge dynamics of the resulting organic solar cells, ultimately determining device performance. However, optimizing the molecular arrangement of donor and acceptor materials within the active layer remains challenging. Here we control the crystallization kinetics of non-fullerene acceptors with a crystallization-regulating agent, acenaphthene. Acenaphthene changes the self-organization of acceptor molecules by inducing a two-step crystallization: it first fixes the packing motif of the acceptor and then refines the crystallized framework, leading to highly oriented acceptors in the active layer. This forms several charge-transport pathways that improve the charge-transport properties of the device. As a result, efficiencies of 20.9% (20.4% certified) and 21% (20.5% certified) are achieved in D18/L8-BO and PM1/L8-BO-X binary organic solar cells, respectively, with a maximum fill factor of 83.2% (82.2% certified). The result is a step forward in the development of organic solar cells. Optimizing the crystallization of the active materials in organic solar cells is challenging. Fu et al. use an acenaphthene additive to induce a two-step crystallization of the non-fullerene acceptor, achieving a certified 20.5% power conversion efficiency.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.