Closed-loop recycling of polyethylene to ethylene and propylene via a kinetic decoupling–recoupling strategy

Tianrui Bi, Yinlin Chen, Longfei Lin, Xue Han, Yang Pan, Chengyuan Liu, Ziyu Cen, Cong Luo, Weilong Wen, Hunain Zulfiqar, Xinrui Zheng, Pascal Manuel, Qian Li, Ningning Wu, Junfeng Xiang, Sihai Yang, Buxing Han
{"title":"Closed-loop recycling of polyethylene to ethylene and propylene via a kinetic decoupling–recoupling strategy","authors":"Tianrui Bi, Yinlin Chen, Longfei Lin, Xue Han, Yang Pan, Chengyuan Liu, Ziyu Cen, Cong Luo, Weilong Wen, Hunain Zulfiqar, Xinrui Zheng, Pascal Manuel, Qian Li, Ningning Wu, Junfeng Xiang, Sihai Yang, Buxing Han","doi":"10.1038/s44286-025-00290-y","DOIUrl":null,"url":null,"abstract":"Conversion of polyethylene (PE) into ethylene and propylene will enable closed-loop recycling of plastics. Conventional catalytic cracking of PE is restricted by kinetic entanglement between the formation of main products and by-products, limiting ethylene and propylene yields to less than 25%. Here we address this challenge with a kinetic decoupling–recoupling (KDRC) strategy, achieving yields of ethylene and propylene up to 79% from PE conversion using a tandem reactor with dual zeolite catalysts. Reaction kinetics analysis, synchrotron-based vacuum ultraviolet photoionization mass spectrometry and in situ neutron powder diffraction reveal that KDRC decouples kinetics of PE cracking to intermediates (butenes and pentenes) in the first stage and synchronizes this process with dimerization–β-scission reactions in the second stage. This synchronization minimizes by-products and enhances ethylene and propylene production substantially. Combined with high catalytic stability, this KDRC strategy represents a robust pathway to combating plastic pollution via a circular economy. This study introduces a kinetic decoupling–recoupling strategy to overcome kinetic limitations in plastic recycling. A tandem catalytic reactor, utilizing zeolite catalysts, converts polyethylene into ethylene and propylene with yields of up to 79%, offering a promising pathway toward efficient closed-loop recycling of polyolefins.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"650-661"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44286-025-00290-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00290-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conversion of polyethylene (PE) into ethylene and propylene will enable closed-loop recycling of plastics. Conventional catalytic cracking of PE is restricted by kinetic entanglement between the formation of main products and by-products, limiting ethylene and propylene yields to less than 25%. Here we address this challenge with a kinetic decoupling–recoupling (KDRC) strategy, achieving yields of ethylene and propylene up to 79% from PE conversion using a tandem reactor with dual zeolite catalysts. Reaction kinetics analysis, synchrotron-based vacuum ultraviolet photoionization mass spectrometry and in situ neutron powder diffraction reveal that KDRC decouples kinetics of PE cracking to intermediates (butenes and pentenes) in the first stage and synchronizes this process with dimerization–β-scission reactions in the second stage. This synchronization minimizes by-products and enhances ethylene and propylene production substantially. Combined with high catalytic stability, this KDRC strategy represents a robust pathway to combating plastic pollution via a circular economy. This study introduces a kinetic decoupling–recoupling strategy to overcome kinetic limitations in plastic recycling. A tandem catalytic reactor, utilizing zeolite catalysts, converts polyethylene into ethylene and propylene with yields of up to 79%, offering a promising pathway toward efficient closed-loop recycling of polyolefins.

Abstract Image

闭环回收聚乙烯乙烯和丙烯通过动力学解耦-重耦策略
将聚乙烯(PE)转化为乙烯和丙烯将实现塑料的闭环回收。传统的PE催化裂化受到主产物和副产物形成之间的动力学缠结的限制,乙烯和丙烯的收率限制在25%以下。在这里,我们通过动力学解耦-重耦(KDRC)策略解决了这一挑战,通过使用双沸石催化剂的串联反应器,PE转化的乙烯和丙烯的收率高达79%。反应动力学分析、基于同步加速器的真空紫外光电离质谱分析和原位中子粉末衍射表明,KDRC在第一阶段将PE裂解动力学解耦到中间体(丁烯和戊烯),并在第二阶段将该过程与二聚化- β-裂解反应同步。这种同步最大限度地减少了副产品,并大大提高了乙烯和丙烯的产量。结合高催化稳定性,这种KDRC战略代表了通过循环经济打击塑料污染的有力途径。本文介绍了一种动力学解耦-再耦合策略来克服塑料回收的动力学限制。串联催化反应器利用沸石催化剂,将聚乙烯转化为乙烯和丙烯,收率高达79%,为聚烯烃的高效闭环回收提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信