Cryogenic X-ray photoelectron spectroscopy for battery interfaces

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-10-22 DOI:10.1038/s41586-025-09618-3
Sanzeeda Baig Shuchi, Giulio D’Acunto, Philaphon Sayavong, Solomon T. Oyakhire, Kenzie M. Sanroman Gutierrez, Juliet Risner-Jamtgaard, Il Rok Choi, Yi Cui, Stacey F. Bent
{"title":"Cryogenic X-ray photoelectron spectroscopy for battery interfaces","authors":"Sanzeeda Baig Shuchi, Giulio D’Acunto, Philaphon Sayavong, Solomon T. Oyakhire, Kenzie M. Sanroman Gutierrez, Juliet Risner-Jamtgaard, Il Rok Choi, Yi Cui, Stacey F. Bent","doi":"10.1038/s41586-025-09618-3","DOIUrl":null,"url":null,"abstract":"Understanding the chemical environment of pristine interfaces is a long-sought goal in electrochemistry, materials science and surface science. A substantial understanding of one such interface, the solid electrolyte interphase (SEI) in lithium anodes, originates from X-ray photoelectron spectroscopy (XPS)1,2. However, room temperature (RT) combined with ultrahigh vacuum (UHV) can induce major SEI evolution from reactions and volatilization during XPS1,2. Thus, a technique is necessary for SEI stabilization. Here we develop cryogenic (cryo)-XPS with immediate plunge freezing and demonstrate SEI preservation. We discover substantially different SEI speciation and a thicker pristine SEI with cryo-XPS, free from RT-associated thickness reduction and alterations to important species, including LiF and Li2O, in UHV. This new access to pristine SEI composition enables performance correlations across diverse electrolyte chemistries. Primarily, we highlight the necessity of studying sensitive interfaces under cryogenic conditions. Cryogenic X-ray photoelectron spectroscopy, combined with immediate plunge freezing, can be used to probe the pristine solid electrolyte interphase in lithium metal batteries.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"646 8086","pages":"850-855"},"PeriodicalIF":48.5000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09618-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the chemical environment of pristine interfaces is a long-sought goal in electrochemistry, materials science and surface science. A substantial understanding of one such interface, the solid electrolyte interphase (SEI) in lithium anodes, originates from X-ray photoelectron spectroscopy (XPS)1,2. However, room temperature (RT) combined with ultrahigh vacuum (UHV) can induce major SEI evolution from reactions and volatilization during XPS1,2. Thus, a technique is necessary for SEI stabilization. Here we develop cryogenic (cryo)-XPS with immediate plunge freezing and demonstrate SEI preservation. We discover substantially different SEI speciation and a thicker pristine SEI with cryo-XPS, free from RT-associated thickness reduction and alterations to important species, including LiF and Li2O, in UHV. This new access to pristine SEI composition enables performance correlations across diverse electrolyte chemistries. Primarily, we highlight the necessity of studying sensitive interfaces under cryogenic conditions. Cryogenic X-ray photoelectron spectroscopy, combined with immediate plunge freezing, can be used to probe the pristine solid electrolyte interphase in lithium metal batteries.

Abstract Image

电池界面的低温x射线光电子能谱
了解原始界面的化学环境是电化学、材料科学和表面科学长期追求的目标。对锂阳极中的固体电解质界面(SEI)的实质性理解源于x射线光电子能谱(XPS)1,2。然而,室温(RT)结合超高真空(UHV)可以诱导主要的SEI在XPS1,2过程中的反应和挥发。因此,一种技术对于SEI稳定是必要的。在这里,我们开发低温(冷冻)-XPS与立即暴跌冷冻和演示SEI保存。我们发现了实质上不同的SEI物种和更厚的原始SEI,没有rt相关的厚度减少和重要物种的改变,包括LiF和Li2O,在特高压中。这种对原始SEI成分的新访问使不同电解质化学之间的性能相关性成为可能。首先,我们强调了在低温条件下研究敏感界面的必要性。低温x射线光电子能谱,结合即时骤降冻结,可用于探测锂金属电池中原始固体电解质界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信