Bilayer of Atomic Layer Deposition and Solution-Processed Tin Dioxide as a Pathway to High-Performance Electron Transport Layers for Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-09-15 DOI:10.1002/solr.202500617
Joshua Sraku Adu, George Kwesi Asare, Byungha Shin, David J. Fermin, Helen Hejin Park
{"title":"Bilayer of Atomic Layer Deposition and Solution-Processed Tin Dioxide as a Pathway to High-Performance Electron Transport Layers for Perovskite Solar Cells","authors":"Joshua Sraku Adu,&nbsp;George Kwesi Asare,&nbsp;Byungha Shin,&nbsp;David J. Fermin,&nbsp;Helen Hejin Park","doi":"10.1002/solr.202500617","DOIUrl":null,"url":null,"abstract":"<p>This perspective explores the transformative potential of atomic layer deposition (ALD) in fabricating high-performance tin dioxide (SnO<sub>2</sub>) electron transport layers (ETLs) for perovskite solar cells (PSCs). ALD ensures conformal coatings with atomic-scale precision, reducing surface roughness and recombination sites while enhancing the structural and electronic properties of complementary SnO<sub>2</sub> layers. Furthermore, ALD's capacity to optimize energy-level alignment and foster high-quality perovskite crystallization improves charge transport, reduces trap-assisted recombination, and enhances device performance. Despite the advantages of ALD, most high-performance ALD SnO<sub>2</sub>-based PSCs are combined with sol–gel deposition of SnO<sub>2</sub>, chemical bath deposition of SnO<sub>2</sub>, or nanoparticle SnO<sub>2</sub> (<i>np</i>-SnO<sub>2</sub>), commonly referred to as bilayer ETLs. Bilayer ETLs address key challenges, including surface uniformity, defect mitigation, and energy alignment, which significantly impact PSC efficiency and stability. This perspective highlights the recent advances in ALD SnO<sub>2</sub>/solution-processed SnO<sub>2</sub> (SP-SnO<sub>2</sub>) bilayer ETLs in PSCs and explores the mechanisms for the superior photovoltaic performance of these bilayer approaches compared to single-layer ALD SnO<sub>2</sub>. The perspective also identifies remaining challenges, including interface defects and scalability issues, and explores solutions like in situ passivation and interfacial engineering.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500617","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500617","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This perspective explores the transformative potential of atomic layer deposition (ALD) in fabricating high-performance tin dioxide (SnO2) electron transport layers (ETLs) for perovskite solar cells (PSCs). ALD ensures conformal coatings with atomic-scale precision, reducing surface roughness and recombination sites while enhancing the structural and electronic properties of complementary SnO2 layers. Furthermore, ALD's capacity to optimize energy-level alignment and foster high-quality perovskite crystallization improves charge transport, reduces trap-assisted recombination, and enhances device performance. Despite the advantages of ALD, most high-performance ALD SnO2-based PSCs are combined with sol–gel deposition of SnO2, chemical bath deposition of SnO2, or nanoparticle SnO2 (np-SnO2), commonly referred to as bilayer ETLs. Bilayer ETLs address key challenges, including surface uniformity, defect mitigation, and energy alignment, which significantly impact PSC efficiency and stability. This perspective highlights the recent advances in ALD SnO2/solution-processed SnO2 (SP-SnO2) bilayer ETLs in PSCs and explores the mechanisms for the superior photovoltaic performance of these bilayer approaches compared to single-layer ALD SnO2. The perspective also identifies remaining challenges, including interface defects and scalability issues, and explores solutions like in situ passivation and interfacial engineering.

Abstract Image

双层原子层沉积和溶液处理二氧化锡作为钙钛矿太阳能电池高性能电子传输层的途径
这一观点探讨了原子层沉积(ALD)在钙钛矿太阳能电池(PSCs)中制造高性能二氧化锡(SnO2)电子传输层(ETLs)的变革潜力。ALD确保了具有原子尺度精度的保形涂层,减少了表面粗糙度和重组位点,同时增强了互补SnO2层的结构和电子性能。此外,ALD优化能级排列和培养高质量钙钛矿结晶的能力改善了电荷输运,减少了陷阱辅助重组,并提高了器件性能。尽管ALD具有优势,但大多数高性能ALD SnO2基PSCs都与SnO2的溶胶-凝胶沉积、化学浴沉积或纳米粒子SnO2 (np-SnO2)相结合,通常被称为双层etl。双层etl解决了关键挑战,包括表面均匀性、缺陷缓解和能量对齐,这些都对PSC的效率和稳定性产生了重大影响。这一观点强调了PSCs中ALD SnO2/溶液处理SnO2 (SP-SnO2)双层etl的最新进展,并探讨了与单层ALD SnO2相比,这些双层方法具有优越的光伏性能的机制。该展望还指出了仍然存在的挑战,包括接口缺陷和可扩展性问题,并探索了原位钝化和界面工程等解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信