Modulating Molecular Interaction of Benzimidazole Derivatives Via Isomerization Toward Rational Additive Engineering for Printable Mesoscopic Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-09-10 DOI:10.1002/solr.202500530
Chuang Yang, Wenjing Hu, Xiaoyu Li, Jiale Liu, Chaoyang Wang, Yang Zhou, Anyi Mei, Hongwei Han
{"title":"Modulating Molecular Interaction of Benzimidazole Derivatives Via Isomerization Toward Rational Additive Engineering for Printable Mesoscopic Perovskite Solar Cells","authors":"Chuang Yang,&nbsp;Wenjing Hu,&nbsp;Xiaoyu Li,&nbsp;Jiale Liu,&nbsp;Chaoyang Wang,&nbsp;Yang Zhou,&nbsp;Anyi Mei,&nbsp;Hongwei Han","doi":"10.1002/solr.202500530","DOIUrl":null,"url":null,"abstract":"<p>Defect states at the boundaries and the perovskite/electron transport layer (ETL) interface critically induce charge recombination in printable mesoscopic perovskite solar cells (p-MPSCs). Herein, we engineer the defect management by introducing two multifunctional benzimidazole derivative additives, 1H-benzimidazole-2-carboxylicacid (2-CBIm) and 5-benzimidazolecarboxylic acid (5-CBIm), which are isomers with different functional group positions, for improving the performance of p-MPSCs. The functional group position differences modulate the defect passivation ability of 2-CBIm and 5-CBIm in p-MPSCs. 5-CBIm, featuring desired distribution of the carboxyl group and the imidazole group, presents superior binding with perovskite and the TiO<sub>2</sub> ETL than 2-CBIm, whose interaction ability is influenced by the steric effect. The enhanced interaction facilitates defect passivation and nonradiative recombination suppression in p-MPSCs. Consequently, the 5-CBIm device achieves a well-improved champion power conversion efficiency (PCE) of 20.61%, surpassing the 2-CBIm device (19.40%) and the control device (18.17%). This work contributes to a better understanding of structure–property relationships and opens extended possibilities for designing advanced defect passivation additives.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500530","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Defect states at the boundaries and the perovskite/electron transport layer (ETL) interface critically induce charge recombination in printable mesoscopic perovskite solar cells (p-MPSCs). Herein, we engineer the defect management by introducing two multifunctional benzimidazole derivative additives, 1H-benzimidazole-2-carboxylicacid (2-CBIm) and 5-benzimidazolecarboxylic acid (5-CBIm), which are isomers with different functional group positions, for improving the performance of p-MPSCs. The functional group position differences modulate the defect passivation ability of 2-CBIm and 5-CBIm in p-MPSCs. 5-CBIm, featuring desired distribution of the carboxyl group and the imidazole group, presents superior binding with perovskite and the TiO2 ETL than 2-CBIm, whose interaction ability is influenced by the steric effect. The enhanced interaction facilitates defect passivation and nonradiative recombination suppression in p-MPSCs. Consequently, the 5-CBIm device achieves a well-improved champion power conversion efficiency (PCE) of 20.61%, surpassing the 2-CBIm device (19.40%) and the control device (18.17%). This work contributes to a better understanding of structure–property relationships and opens extended possibilities for designing advanced defect passivation additives.

Abstract Image

通过异构化调节苯并咪唑衍生物的分子相互作用,实现可印刷介观钙钛矿太阳能电池的合理增材工程
在可印刷介观钙钛矿太阳能电池(p-MPSCs)中,边界和钙钛矿/电子传输层(ETL)界面的缺陷态严重诱导电荷重组。本研究通过引入两种多功能苯并咪唑衍生物添加剂h -苯并咪唑-2-羧酸(2-CBIm)和5-苯并咪唑-羧酸(5-CBIm)这两种具有不同官能团位置的异构体,设计缺陷管理,以提高p-MPSCs的性能。2-CBIm和5-CBIm在p-MPSCs中的缺陷钝化能力受官能团位置差异的影响。5-CBIm具有良好的羧基和咪唑基分布,与钙钛矿和TiO2 ETL的结合优于2-CBIm,其相互作用能力受空间位阻效应的影响。增强的相互作用促进了p-MPSCs的缺陷钝化和非辐射重组抑制。因此,5-CBIm器件获得了20.61%的冠军功率转换效率(PCE),超过了2-CBIm器件(19.40%)和控制器件(18.17%)。这项工作有助于更好地理解结构-性能关系,并为设计先进的缺陷钝化添加剂开辟了广阔的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信