Defect-engineered single crystal Bi2Te3 via Sb and Se doping for enhanced thermoelectric performance

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Suchitra Puthran, Ganesh Shridhar Hegde, A. N. Prabhu, You-Lun Wang, Y. K. Kuo, Sindhur Joshi, N. K. Udayashankar, Ramakrishna Nayak
{"title":"Defect-engineered single crystal Bi2Te3 via Sb and Se doping for enhanced thermoelectric performance","authors":"Suchitra Puthran,&nbsp;Ganesh Shridhar Hegde,&nbsp;A. N. Prabhu,&nbsp;You-Lun Wang,&nbsp;Y. K. Kuo,&nbsp;Sindhur Joshi,&nbsp;N. K. Udayashankar,&nbsp;Ramakrishna Nayak","doi":"10.1007/s10853-025-11567-1","DOIUrl":null,"url":null,"abstract":"<div><p>The limitation of the single crystal melt growth method to tune the microstructure of the materials in a controlled way and the need for enhancing the thermoelectric properties of single crystal grown Bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>), through defect and microstructural engineering, has motivated this work. In this work, we address this limitation through a controlled doping strategy using antimony (Sb) and selenium (Se) to introduce targeted defects and microstructural modifications within single-crystalline Bi<sub>2</sub>Te<sub>3</sub>. Sb and Se substitutions create atomic scale strain, point defects, and micro-grain structures, enhancing phonon scattering without significantly disrupting the crystalline order. The resulting defect-engineered single crystals exhibit improved thermoelectric performance, with a notable reduction in lattice thermal conductivity and retention of excellent electrical properties. The co-doped compositions, Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> and (Bi0.98Sb<sub>0.02</sub>)<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub>, exhibited significantly enhanced thermoelectric performance, with Seebeck coefficients reaching ~ 253 μV/K and − 211 μV/K, respectively, over the 10–400 K range. The power factor improved remarkably, showing a ~ 30-fold increase for Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> and ~ 20-fold for the Sb-doped variant, while the figure of merit (ZT) improved by ~ 28.5 and ~ 14 times, respectively. Further, a flexible thermoelectric device fabricated from these optimized materials generated output power of 2.7 nW and 3.35 nW at ambient temperature. The non-monotonic variation of the Seebeck coefficient with Sb content, showing an optimal enhancement at x = 0.04, highlights the delicate balance between carrier concentration and band structure modification, emphasizing moderate Sb substitution achieves the most favorable conditions for thermoelectric performance. Our results present a scalable strategy for bridging the performance gap between pristine single crystals and heavily nanostructured thermoelectrics, opening new avenues for high-efficiency energy harvesting devices.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 42","pages":"20529 - 20557"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-025-11567-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11567-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The limitation of the single crystal melt growth method to tune the microstructure of the materials in a controlled way and the need for enhancing the thermoelectric properties of single crystal grown Bismuth telluride (Bi2Te3), through defect and microstructural engineering, has motivated this work. In this work, we address this limitation through a controlled doping strategy using antimony (Sb) and selenium (Se) to introduce targeted defects and microstructural modifications within single-crystalline Bi2Te3. Sb and Se substitutions create atomic scale strain, point defects, and micro-grain structures, enhancing phonon scattering without significantly disrupting the crystalline order. The resulting defect-engineered single crystals exhibit improved thermoelectric performance, with a notable reduction in lattice thermal conductivity and retention of excellent electrical properties. The co-doped compositions, Bi2Te2.7Se0.3 and (Bi0.98Sb0.02)2Te2.7Se0.3, exhibited significantly enhanced thermoelectric performance, with Seebeck coefficients reaching ~ 253 μV/K and − 211 μV/K, respectively, over the 10–400 K range. The power factor improved remarkably, showing a ~ 30-fold increase for Bi2Te2.7Se0.3 and ~ 20-fold for the Sb-doped variant, while the figure of merit (ZT) improved by ~ 28.5 and ~ 14 times, respectively. Further, a flexible thermoelectric device fabricated from these optimized materials generated output power of 2.7 nW and 3.35 nW at ambient temperature. The non-monotonic variation of the Seebeck coefficient with Sb content, showing an optimal enhancement at x = 0.04, highlights the delicate balance between carrier concentration and band structure modification, emphasizing moderate Sb substitution achieves the most favorable conditions for thermoelectric performance. Our results present a scalable strategy for bridging the performance gap between pristine single crystals and heavily nanostructured thermoelectrics, opening new avenues for high-efficiency energy harvesting devices.

通过Sb和Se掺杂的缺陷工程单晶Bi2Te3增强热电性能
单晶熔体生长方法在控制材料微观结构方面的局限性,以及通过缺陷和微结构工程提高单晶生长碲化铋(Bi2Te3)热电性能的需要,促使了这项工作的开展。在这项工作中,我们通过使用锑(Sb)和硒(Se)的控制掺杂策略在单晶Bi2Te3中引入靶向缺陷和微观结构修饰来解决这一限制。Sb和Se的取代产生了原子尺度的应变、点缺陷和微观颗粒结构,增强了声子散射,但没有明显破坏晶体秩序。由此产生的缺陷工程单晶表现出改善的热电性能,晶格导热系数显著降低,并保留了优异的电学性能。共掺杂Bi2Te2.7Se0.3和(Bi0.98Sb0.02)2Te2.7Se0.3的热电性能显著增强,在10 ~ 400 K范围内,Seebeck系数分别达到~ 253 μV/K和- 211 μV/K。功率因数显著提高,Bi2Te2.7Se0.3的功率因数提高了~ 30倍,sb掺杂的功率因数提高了~ 20倍,而ZT分别提高了~ 28.5倍和~ 14倍。此外,由这些优化材料制成的柔性热电器件在环境温度下可产生2.7 nW和3.35 nW的输出功率。Seebeck系数随Sb含量的非单调变化,在x = 0.04时表现出最优的增强,突出了载流子浓度与能带结构修饰之间的微妙平衡,强调适度的Sb取代达到了热电性能的最有利条件。我们的研究结果提出了一种可扩展的策略,可以弥合原始单晶和重纳米结构热电材料之间的性能差距,为高效能量收集设备开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信