Enhanced photoluminescence via plasmonic gold nanoparticles and improved stability of perovskite nanocrystals in macroporous (Polydimethylsiloxane) PDMS matrices
IF 3.9 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sema Karabel Ocal, Kevser Sahin Tiras, M. Serdar Önses, Evren Mutlugun
{"title":"Enhanced photoluminescence via plasmonic gold nanoparticles and improved stability of perovskite nanocrystals in macroporous (Polydimethylsiloxane) PDMS matrices","authors":"Sema Karabel Ocal, Kevser Sahin Tiras, M. Serdar Önses, Evren Mutlugun","doi":"10.1007/s10853-025-11595-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we report a simple and cost-effective method for improving both the environmental stability and photoluminescence quantum efficiency (PLQY) of perovskite nanocrystals (PNCs). Through their embedding in a specially designed macroporous polydimethylsiloxane (MPDMS) matrix and incorporation of plasmonic gold nanoparticles (Au NPs), remarkable improvements are achieved. The resulting MPDMS@PNC composites are seen to retain near-unity quantum efficiency even after 24-h immersion in water and are observed to retain over 85% of the original efficiency even at 75 °C, displaying excellent thermal stability. More interestingly, by incorporating Au NPs and subjecting the material to mechanical pressure, the lifetime of the PNCs gets further increased. This is due to the more intimate spatial arrangement of Au NPs in the porous matrix, enhancing localized surface plasmon resonance (LSPR) coupling and thereby enhancing the photoluminescence (PL) of the PNCs. In general, this approach offers a scalable and robust route to designing stable, high-performance perovskite-based materials for next-generation optoelectronic applications.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 42","pages":"20396 - 20405"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11595-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we report a simple and cost-effective method for improving both the environmental stability and photoluminescence quantum efficiency (PLQY) of perovskite nanocrystals (PNCs). Through their embedding in a specially designed macroporous polydimethylsiloxane (MPDMS) matrix and incorporation of plasmonic gold nanoparticles (Au NPs), remarkable improvements are achieved. The resulting MPDMS@PNC composites are seen to retain near-unity quantum efficiency even after 24-h immersion in water and are observed to retain over 85% of the original efficiency even at 75 °C, displaying excellent thermal stability. More interestingly, by incorporating Au NPs and subjecting the material to mechanical pressure, the lifetime of the PNCs gets further increased. This is due to the more intimate spatial arrangement of Au NPs in the porous matrix, enhancing localized surface plasmon resonance (LSPR) coupling and thereby enhancing the photoluminescence (PL) of the PNCs. In general, this approach offers a scalable and robust route to designing stable, high-performance perovskite-based materials for next-generation optoelectronic applications.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.