CdZnS Nanoparticles Supported on an Ultrathin Cu Metal–Organic Layer as an S-Scheme Photocatalyst for Hydrogen Production and Pollutant Degradation

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yingcong Wei, , , Zeyu Su, , , Hanyi Gu, , , Ke Wang, , , Jie Hu*, , and , Lele Wang*, 
{"title":"CdZnS Nanoparticles Supported on an Ultrathin Cu Metal–Organic Layer as an S-Scheme Photocatalyst for Hydrogen Production and Pollutant Degradation","authors":"Yingcong Wei,&nbsp;, ,&nbsp;Zeyu Su,&nbsp;, ,&nbsp;Hanyi Gu,&nbsp;, ,&nbsp;Ke Wang,&nbsp;, ,&nbsp;Jie Hu*,&nbsp;, and ,&nbsp;Lele Wang*,&nbsp;","doi":"10.1021/acsanm.5c03579","DOIUrl":null,"url":null,"abstract":"<p >The carrier separation efficiency and exposure of active sites for photocatalysts are two key factors determining the efficiency of photocatalysis. Minimizing charge carrier recombination while maximizing active site accessibility remains a critical challenge in photocatalytic performance optimization. Herein, an S-Scheme heterojunction composed of two-dimensional (2D) monolayer Cu-5,5′-((anthracene-9,10-diyl)bis(oxy))diisophthalic acid metal–organic layers (CES) and 0D CdZnS nanoparticles (CZS) was designed to improve the kinetics of photocatalytic reactions. The synthesized Cu-MOL exhibited a uniform thickness of approximately 1.98 nm. This ultrathin architecture not only exposed more active sites but also shortened the pathways for mass and charge transfer, thereby enhancing its catalytic activity. In situ irradiated XPS and EPR analysis for DMPO–<sup>•</sup>O<sub>2</sub><sup>–</sup> signals confirmed an S-scheme charge transfer mechanism, thereby enhancing interfacial charge transfer and preserving a stronger redox ability. As a result, the optimized M<sub>1</sub>S<sub>10</sub> heterostructure exhibited a high-efficiency photocatalytic hydrogen evolution rate of 124.7 mmol·h<sup>–1</sup>·g<sup>–1</sup> under 425 nm light irradiation and a tetracycline hydrochloride (TC) degradation rate of 94% within 40 min. These values significantly surpass those of pure CES (0.1 mmol·h<sup>–1</sup>·g<sup>–1</sup> under 380–780 nm, 70% TC degradation) and CZS (43.8 mmol·h<sup>–1</sup>·g<sup>–1</sup> under 380–780 nm, 74% TC degradation). This work establishes a viable paradigm for the construction of highly efficient catalysts in solar-to-chemical energy conversion through heterojunction design and morphology modulation.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 42","pages":"20387–20396"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03579","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The carrier separation efficiency and exposure of active sites for photocatalysts are two key factors determining the efficiency of photocatalysis. Minimizing charge carrier recombination while maximizing active site accessibility remains a critical challenge in photocatalytic performance optimization. Herein, an S-Scheme heterojunction composed of two-dimensional (2D) monolayer Cu-5,5′-((anthracene-9,10-diyl)bis(oxy))diisophthalic acid metal–organic layers (CES) and 0D CdZnS nanoparticles (CZS) was designed to improve the kinetics of photocatalytic reactions. The synthesized Cu-MOL exhibited a uniform thickness of approximately 1.98 nm. This ultrathin architecture not only exposed more active sites but also shortened the pathways for mass and charge transfer, thereby enhancing its catalytic activity. In situ irradiated XPS and EPR analysis for DMPO–O2 signals confirmed an S-scheme charge transfer mechanism, thereby enhancing interfacial charge transfer and preserving a stronger redox ability. As a result, the optimized M1S10 heterostructure exhibited a high-efficiency photocatalytic hydrogen evolution rate of 124.7 mmol·h–1·g–1 under 425 nm light irradiation and a tetracycline hydrochloride (TC) degradation rate of 94% within 40 min. These values significantly surpass those of pure CES (0.1 mmol·h–1·g–1 under 380–780 nm, 70% TC degradation) and CZS (43.8 mmol·h–1·g–1 under 380–780 nm, 74% TC degradation). This work establishes a viable paradigm for the construction of highly efficient catalysts in solar-to-chemical energy conversion through heterojunction design and morphology modulation.

Abstract Image

超薄Cu金属-有机层负载的CdZnS纳米颗粒作为S-Scheme光催化剂产氢和污染物降解
载体分离效率和光催化剂活性位点的暴露是决定光催化效率的两个关键因素。最小化载流子重组同时最大化活性位点可及性仍然是光催化性能优化的关键挑战。本文设计了一种由二维(2D)单层cu -5,5 ' -((蒽-9,10-二基)双(氧))二对苯二甲酸金属有机层(CES)和0D CdZnS纳米颗粒(CZS)组成的S-Scheme异质结,以改善光催化反应的动力学。Cu-MOL的厚度均匀,约为1.98 nm。这种超薄结构不仅暴露了更多的活性位点,而且缩短了质量和电荷转移的途径,从而提高了其催化活性。对DMPO -•O2 -信号的原位辐照XPS和EPR分析证实了S-scheme电荷转移机制,从而增强了界面电荷转移并保持了较强的氧化还原能力。结果表明,优化后的M1S10异质结构在425 nm光照射下的高效光催化析氢速率为124.7 mmol·h-1·g-1,在40 min内对盐酸四环素(TC)的降解率为94%。这些值显著高于纯CES (380 ~ 780 nm下0.1 mmol·h-1·g-1, TC降解率70%)和CZS (380 ~ 780 nm下43.8 mmol·h-1·g-1, TC降解率74%)。本研究为通过异质结设计和形态调制构建高效的太阳能-化学能转换催化剂建立了一个可行的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信