{"title":"A circular economy approach for the global lithium-ion battery supply chain.","authors":"Mengyu Zhai,Yufeng Wu,Shaonan Tian,Haoran Yuan,Bin Li,Xubiao Luo,Guohe Huang,Yupeng Fu,Mengye Zhu,Yifan Gu,Wei Huan,Yu Dai,Huaidong Wang,Liming Yang,Xiaofei Yin,Gongqi Liu,Zhi Li,Jing Gu,Yazhuo Wang,Yong Chen,Tieyong Zuo","doi":"10.1038/s41586-025-09617-4","DOIUrl":null,"url":null,"abstract":"The lithium-ion battery supply chain is critical for global decarbonization1,2, yet its geographically dispersed production stages pose substantial challenges for carbon management3,4. Here we developed a lithium cycle computable general equilibrium (LCCGE) model, integrating life-cycle thinking with global economic dynamics to systematically assess decarbonization pathways. Our analysis reveals a notable 'value-emission paradox' across the supply chain: downstream cathode production generates 42.56% of economic value from 34.82% of emissions, whereas upstream mining accounts for 38.52% of total emissions from only 18.78% of the value. A comprehensive scenario analysis shows that, although consumer-oriented recycling can reduce global emission intensity by 16.30% in 2060, it is far surpassed by integrated strategies. The highest global emission reduction (35.87%) is achieved by combining cross-regional cooperation on technology and trade with regionally tailored domestic circular economy policies. This synergistic approach proves highly effective in key manufacturing economies, yielding potential emission reductions of 39.14% in the USA, 37.28% in the European Union and 42.35% in China. By revealing the synergy of combining environmental, technological and trade levers through both global collaboration and local adaptation, our work provides a blueprint for decarbonizing complex global supply chains and establishes a framework for analysing their sustainability analysis.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"15 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09617-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The lithium-ion battery supply chain is critical for global decarbonization1,2, yet its geographically dispersed production stages pose substantial challenges for carbon management3,4. Here we developed a lithium cycle computable general equilibrium (LCCGE) model, integrating life-cycle thinking with global economic dynamics to systematically assess decarbonization pathways. Our analysis reveals a notable 'value-emission paradox' across the supply chain: downstream cathode production generates 42.56% of economic value from 34.82% of emissions, whereas upstream mining accounts for 38.52% of total emissions from only 18.78% of the value. A comprehensive scenario analysis shows that, although consumer-oriented recycling can reduce global emission intensity by 16.30% in 2060, it is far surpassed by integrated strategies. The highest global emission reduction (35.87%) is achieved by combining cross-regional cooperation on technology and trade with regionally tailored domestic circular economy policies. This synergistic approach proves highly effective in key manufacturing economies, yielding potential emission reductions of 39.14% in the USA, 37.28% in the European Union and 42.35% in China. By revealing the synergy of combining environmental, technological and trade levers through both global collaboration and local adaptation, our work provides a blueprint for decarbonizing complex global supply chains and establishes a framework for analysing their sustainability analysis.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.