Yu Fan,Mi Ni,Varun Aggarwala,Edward A Mead,Magdalena Ksiezarek,Lei Cao,Michael A Kamm,Thomas J Borody,Sudarshan Paramsothy,Nadeem O Kaakoush,Ari Grinspan,Jeremiah J Faith,Gang Fang
{"title":"Long-read metagenomics for strain tracking after faecal microbiota transplant.","authors":"Yu Fan,Mi Ni,Varun Aggarwala,Edward A Mead,Magdalena Ksiezarek,Lei Cao,Michael A Kamm,Thomas J Borody,Sudarshan Paramsothy,Nadeem O Kaakoush,Ari Grinspan,Jeremiah J Faith,Gang Fang","doi":"10.1038/s41564-025-02164-8","DOIUrl":null,"url":null,"abstract":"Accurate tracking of bacterial strains that stably engraft in faecal microbiota transplant (FMT) recipients is critical for understanding the determinants of strain engraftment, evaluating correlations with clinical outcomes and guiding the development of therapeutic consortia. While short-read sequencing has advanced FMT research, it faces challenges in strain-level de novo metagenomic assembly. Here we describe LongTrack, a method that uses long-read metagenomic assemblies for FMT strain tracking. LongTrack shows higher precision and specificity than short-read approaches, especially when multiple strains co-exist in the same sample. We uncovered 648 engrafted strains across six FMT cases involving patients with recurrent Clostridioides difficile infection and inflammatory bowel disease. Furthermore, long reads enabled assessment of the genomic and epigenomic stability of engrafted strains at the 5-year follow-up timepoint, revealing structural variations that may be associated with strain adaptation in a new host environment. Our findings support the use of long-read metagenomics to track microbial strains and their adaptations.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"101 1","pages":""},"PeriodicalIF":19.4000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-02164-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate tracking of bacterial strains that stably engraft in faecal microbiota transplant (FMT) recipients is critical for understanding the determinants of strain engraftment, evaluating correlations with clinical outcomes and guiding the development of therapeutic consortia. While short-read sequencing has advanced FMT research, it faces challenges in strain-level de novo metagenomic assembly. Here we describe LongTrack, a method that uses long-read metagenomic assemblies for FMT strain tracking. LongTrack shows higher precision and specificity than short-read approaches, especially when multiple strains co-exist in the same sample. We uncovered 648 engrafted strains across six FMT cases involving patients with recurrent Clostridioides difficile infection and inflammatory bowel disease. Furthermore, long reads enabled assessment of the genomic and epigenomic stability of engrafted strains at the 5-year follow-up timepoint, revealing structural variations that may be associated with strain adaptation in a new host environment. Our findings support the use of long-read metagenomics to track microbial strains and their adaptations.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.