Steam-Activated Lattice Oxygen Enhances Interfacial Redox Stability for Low-Temperature N2O Decomposition over Rh/CeO2.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ningqiang Zhang,Chenxi He,Yuan Jing,Yucheng Qian,Yuan Qin,Hong Lin,Minami Obuchi,Ryo Toyoshima,Hiroshi Kondoh,Kohei Oka,Lingcong Li,Akihiko Anzai,Takashi Toyao,Ken-Ichi Shimizu
{"title":"Steam-Activated Lattice Oxygen Enhances Interfacial Redox Stability for Low-Temperature N2O Decomposition over Rh/CeO2.","authors":"Ningqiang Zhang,Chenxi He,Yuan Jing,Yucheng Qian,Yuan Qin,Hong Lin,Minami Obuchi,Ryo Toyoshima,Hiroshi Kondoh,Kohei Oka,Lingcong Li,Akihiko Anzai,Takashi Toyao,Ken-Ichi Shimizu","doi":"10.1002/anie.202517403","DOIUrl":null,"url":null,"abstract":"Activation of surface lattice oxygen is crucial for enabling low-temperature catalytic oxidation reactions. While earlier studies have hinted that steam treatment could enhance the activity of lattice oxygen in CeO2 supported catalysts, the mechanistic understanding remains superficial. Here, we unravel the origin and role of steam-activated lattice oxygen in promoting low-temperature N2O decomposition. Using a combination of isotope-labeled steam (H2 18O), in situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and in situ X-ray absorption spectroscopy (XAS), we provide direct evidence that high-temperature steam induces lattice oxygen activation at the Rh-CeO2 interface. These activated oxygen species facilitate oxygen desorption and enhance the redox cycling stability of Rh and Ce species, dramatically improving catalytic activity at low temperatures. Our findings reveal a previously overlooked pathway for surface lattice oxygen activation and offer mechanistic insights to guide the rational design of efficient low-temperature redox catalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"3 1","pages":"e202517403"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202517403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Activation of surface lattice oxygen is crucial for enabling low-temperature catalytic oxidation reactions. While earlier studies have hinted that steam treatment could enhance the activity of lattice oxygen in CeO2 supported catalysts, the mechanistic understanding remains superficial. Here, we unravel the origin and role of steam-activated lattice oxygen in promoting low-temperature N2O decomposition. Using a combination of isotope-labeled steam (H2 18O), in situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and in situ X-ray absorption spectroscopy (XAS), we provide direct evidence that high-temperature steam induces lattice oxygen activation at the Rh-CeO2 interface. These activated oxygen species facilitate oxygen desorption and enhance the redox cycling stability of Rh and Ce species, dramatically improving catalytic activity at low temperatures. Our findings reveal a previously overlooked pathway for surface lattice oxygen activation and offer mechanistic insights to guide the rational design of efficient low-temperature redox catalysts.
蒸汽活化的点阵氧在Rh/CeO2上增强低温N2O分解的界面氧化还原稳定性。
表面晶格氧的活化是低温催化氧化反应的关键。虽然早期的研究表明,蒸汽处理可以提高CeO2负载催化剂中晶格氧的活性,但对机理的理解仍然很肤浅。在这里,我们揭示了蒸汽活化晶格氧在促进低温N2O分解中的起源和作用。利用同位素标记蒸汽(H2 18O)、原位常压x射线光电子能谱(AP-XPS)和原位x射线吸收光谱(XAS)相结合的方法,我们提供了高温蒸汽在Rh-CeO2界面诱导晶格氧活化的直接证据。这些活性氧促进了氧的解吸,增强了Rh和Ce的氧化还原循环稳定性,显著提高了低温催化活性。我们的发现揭示了之前被忽视的表面晶格氧活化途径,并为指导高效低温氧化还原催化剂的合理设计提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信