Decoding emergent properties of microbial community functions through sub-community observations and interpretable machine learning.

Hidehiro Ishizawa,Sunao Noguchi,Miku Kito,Yui Nomura,Kodai Kimura,Masahiro Takeo
{"title":"Decoding emergent properties of microbial community functions through sub-community observations and interpretable machine learning.","authors":"Hidehiro Ishizawa,Sunao Noguchi,Miku Kito,Yui Nomura,Kodai Kimura,Masahiro Takeo","doi":"10.1093/ismejo/wraf236","DOIUrl":null,"url":null,"abstract":"The functions of microbial communities, including substrate conversion and pathogen suppression, arise not as a simple sum of individual species' capabilities but through complex interspecies interactions. Understanding how such functions arise from individual species and their interactions remains a major challenge, limiting efforts to rationally understand microbial roles in both natural and engineered ecosystems. Because current holistic (meta-omics) and reductionist (isolation- or single-cell-based) approaches struggle to capture these emergent microbial community functions, this study explores an intermediate strategy: analyzing simple sub-community combinations to enable a bottom-up understanding of community-level functions. To examine the validity of this approach, we used a nine-member synthetic microbial community capable of degrading the environmental pollutant aniline, and systematically generated a dataset of 256 sub-community combinations and their associated functions. Analyses using random forest models revealed that the sub-community combinations of just three to four species enabled the quantitative prediction of functions in larger communities (5-9-member; Pearson's r = 0.78-0.80). Prediction performance remained robust even with limited sub-community data, suggesting applicability to more diverse microbial communities where exhaustive sub-community observation is infeasible. Moreover, interpreting models trained on these simple sub-community combinations enabled the identification of key species and interspecies interactions that strongly influence the overall community function. These findings provide a methodological framework for mechanistically dissecting complex microbial community functions through sub-community-based analysis.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The functions of microbial communities, including substrate conversion and pathogen suppression, arise not as a simple sum of individual species' capabilities but through complex interspecies interactions. Understanding how such functions arise from individual species and their interactions remains a major challenge, limiting efforts to rationally understand microbial roles in both natural and engineered ecosystems. Because current holistic (meta-omics) and reductionist (isolation- or single-cell-based) approaches struggle to capture these emergent microbial community functions, this study explores an intermediate strategy: analyzing simple sub-community combinations to enable a bottom-up understanding of community-level functions. To examine the validity of this approach, we used a nine-member synthetic microbial community capable of degrading the environmental pollutant aniline, and systematically generated a dataset of 256 sub-community combinations and their associated functions. Analyses using random forest models revealed that the sub-community combinations of just three to four species enabled the quantitative prediction of functions in larger communities (5-9-member; Pearson's r = 0.78-0.80). Prediction performance remained robust even with limited sub-community data, suggesting applicability to more diverse microbial communities where exhaustive sub-community observation is infeasible. Moreover, interpreting models trained on these simple sub-community combinations enabled the identification of key species and interspecies interactions that strongly influence the overall community function. These findings provide a methodological framework for mechanistically dissecting complex microbial community functions through sub-community-based analysis.
通过亚群落观察和可解释性机器学习解码微生物群落功能的涌现特性。
微生物群落的功能,包括底物转化和病原体抑制,不是单个物种能力的简单总和,而是通过复杂的物种间相互作用产生的。了解这些功能是如何从单个物种及其相互作用中产生的仍然是一个重大挑战,限制了合理理解微生物在自然和工程生态系统中的作用。由于目前的整体(元组学)和还原论(基于分离或单细胞的)方法难以捕捉这些新兴的微生物群落功能,本研究探索了一种中间策略:分析简单的亚群落组合,从而能够自下而上地理解群落水平的功能。为了验证该方法的有效性,我们使用了一个能够降解环境污染物苯胺的9个合成微生物群落,并系统地生成了包含256个亚群落组合及其相关功能的数据集。随机森林模型分析表明,仅3 - 4个物种的亚群落组合就可以定量预测更大群落(5-9个成员;Pearson’s r = 0.78-0.80)的功能。即使在有限的亚群落数据下,预测效果仍然很好,这表明在无法进行详尽的亚群落观察的情况下,预测结果适用于更多样化的微生物群落。此外,根据这些简单的亚群落组合训练的解释模型能够识别出对整个群落功能产生强烈影响的关键物种和种间相互作用。这些发现为通过亚社区分析机制剖析复杂微生物群落功能提供了一个方法学框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信