Ultrafast Spin Dynamics beyond s-Wave Magnets: A Universal Polarization Dependence.

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaobo Zhou,Junjie He
{"title":"Ultrafast Spin Dynamics beyond s-Wave Magnets: A Universal Polarization Dependence.","authors":"Zhaobo Zhou,Junjie He","doi":"10.1021/acs.nanolett.5c04475","DOIUrl":null,"url":null,"abstract":"Symmetry and hybridization yield anisotropic but nodal-less Fermi surfaces in s-wave ferromagnets (FMs) and antiferromagnets (AFMs), while they produce distinct momentum-space nodes in altermagnets (AMs). Both drive anisotropic femtosecond magnetization dynamics, but this link remains little explored. Here, we investigate laser-driven ultrafast spin dynamics in FMs, AFMs, and AMs with varying polarization angles using time-dependent density functional theory. We demonstrated, in FMs and AFMs, that laser polarization controls the amplitude of anisotropic yet symmetric demagnetization. In contrast, AMs─featuring spin nodal structures─exhibit sublattice-asymmetric demagnetization that is highly sensitive to laser incidence. This behavior arises from the anisotropy of the Fermi surface and band dispersion, which governs optical-induced intersite spin transfer (OISTR). We proposed a unified framework using the band-path-resolved local density of states to understand anisotropic OISTR and its impact on spin dynamics. Our results establish a direct connection between polarization-dependent ultrafast spin responses and the anisotropic electronic structure of materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"136 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c04475","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetry and hybridization yield anisotropic but nodal-less Fermi surfaces in s-wave ferromagnets (FMs) and antiferromagnets (AFMs), while they produce distinct momentum-space nodes in altermagnets (AMs). Both drive anisotropic femtosecond magnetization dynamics, but this link remains little explored. Here, we investigate laser-driven ultrafast spin dynamics in FMs, AFMs, and AMs with varying polarization angles using time-dependent density functional theory. We demonstrated, in FMs and AFMs, that laser polarization controls the amplitude of anisotropic yet symmetric demagnetization. In contrast, AMs─featuring spin nodal structures─exhibit sublattice-asymmetric demagnetization that is highly sensitive to laser incidence. This behavior arises from the anisotropy of the Fermi surface and band dispersion, which governs optical-induced intersite spin transfer (OISTR). We proposed a unified framework using the band-path-resolved local density of states to understand anisotropic OISTR and its impact on spin dynamics. Our results establish a direct connection between polarization-dependent ultrafast spin responses and the anisotropic electronic structure of materials.
超越s波磁体的超快自旋动力学:一种普遍的极化依赖。
对称和杂化在s波铁磁体(FMs)和反铁磁体(AFMs)中产生各向异性但无节点的费米表面,而在交替磁体(AMs)中产生不同的动量空间节点。两者都驱动各向异性飞秒磁化动力学,但这种联系仍然很少被探索。本文利用随时间变化的密度泛函理论,研究了激光驱动的薄膜、原子力显微镜和具有不同偏振角的薄膜的超快自旋动力学。我们证明,在FMs和AFMs中,激光偏振控制各向异性但对称退磁的幅度。相比之下,具有自旋结结构的AMs表现出对激光入射高度敏感的亚晶格不对称退磁。这种行为源于费米表面的各向异性和带色散,这决定了光诱导的场间自旋转移(OISTR)。我们提出了一个统一的框架,使用带程解析的局域态密度来理解各向异性OISTR及其对自旋动力学的影响。我们的结果建立了极化相关的超快自旋响应与材料的各向异性电子结构之间的直接联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信