Engineering Amorphous/Crystalline Ni/NiO Electrocatalysts for Highly Efficient Hydrogen Peroxide Production.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-23 DOI:10.1021/acsnano.5c13941
Rong-Yue Wang,Jia-Peng Zhong,Yu-Qiong Li,De-Xuan Li,Jia-Zhou Meng,Keng-Bo Ding,Chuan-Hao Li,Zhao-Qing Liu
{"title":"Engineering Amorphous/Crystalline Ni/NiO Electrocatalysts for Highly Efficient Hydrogen Peroxide Production.","authors":"Rong-Yue Wang,Jia-Peng Zhong,Yu-Qiong Li,De-Xuan Li,Jia-Zhou Meng,Keng-Bo Ding,Chuan-Hao Li,Zhao-Qing Liu","doi":"10.1021/acsnano.5c13941","DOIUrl":null,"url":null,"abstract":"Enhanced O2 adsorption and favorable oxygen-intermediate desorption are essential for efficient electrochemical hydrogen peroxide production (EHPP) via the two-electron oxygen reduction reaction (2e- ORR). Here, we report an amorphous/crystalline Ni-NiO electrocatalyst synthesized via a partial reduction strategy. By engineering the amorphous/crystalline interfacial strain through varying the reduction time, the optimized Ni/NiO catalyst achieves a hydrogen peroxide selectivity of 91.78% with a Faradaic efficiency of 97.47%. It maintains a high H2O2 yield of 949.5 mM/g-1cat h-1 across three electrode systems, outperforming most Ni-based benchmarks. Density functional theory calculations and in situ characterizations reveal that strain at unsaturated Ni sites promotes electron redistribution and Ni-O bond lengthening, thereby shifting the d-p band center difference to favor O2 adsorption while weakening *OOH binding. The enhanced O2 adsorption and accelerated *OOH desorption direct the ORR pathway toward the two-electron route for H2O2 generation. Furthermore, the in situ generated H2O2 effectively degrades organic pollutants, indicating its practical utility in water remediation. This work presents the strain engineering approach in amorphous/crystalline Ni/NiO heterostructures for high-performance EHPP and selective two-electron ORR.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"20 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c13941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhanced O2 adsorption and favorable oxygen-intermediate desorption are essential for efficient electrochemical hydrogen peroxide production (EHPP) via the two-electron oxygen reduction reaction (2e- ORR). Here, we report an amorphous/crystalline Ni-NiO electrocatalyst synthesized via a partial reduction strategy. By engineering the amorphous/crystalline interfacial strain through varying the reduction time, the optimized Ni/NiO catalyst achieves a hydrogen peroxide selectivity of 91.78% with a Faradaic efficiency of 97.47%. It maintains a high H2O2 yield of 949.5 mM/g-1cat h-1 across three electrode systems, outperforming most Ni-based benchmarks. Density functional theory calculations and in situ characterizations reveal that strain at unsaturated Ni sites promotes electron redistribution and Ni-O bond lengthening, thereby shifting the d-p band center difference to favor O2 adsorption while weakening *OOH binding. The enhanced O2 adsorption and accelerated *OOH desorption direct the ORR pathway toward the two-electron route for H2O2 generation. Furthermore, the in situ generated H2O2 effectively degrades organic pollutants, indicating its practical utility in water remediation. This work presents the strain engineering approach in amorphous/crystalline Ni/NiO heterostructures for high-performance EHPP and selective two-electron ORR.
用于高效过氧化氢生产的工程非晶/结晶Ni/NiO电催化剂。
通过双电子氧还原反应(2e- ORR)高效生产过氧化氢(EHPP),必须增强氧吸附和良好的氧中间体脱附。在这里,我们报告了一种非晶/结晶镍镍电催化剂通过部分还原策略合成。通过改变还原时间对非晶/晶界面应变进行改造,优化后的Ni/NiO催化剂的过氧化氢选择性为91.78%,法拉第效率为97.47%。它在三种电极系统中保持了949.5 mM/g-1cat h-1的高H2O2产率,优于大多数基于ni的基准。密度泛函理论计算和原位表征表明,不饱和Ni位点的应变促进了电子再分布和Ni- o键的延长,从而改变了d-p带中心的差异,有利于O2的吸附,同时减弱了*OOH的结合。O2吸附增强和*OOH解吸加速使ORR途径向双电子途径生成H2O2。此外,原位生成的H2O2可有效降解有机污染物,表明其在水体修复中的实际应用价值。本研究提出了用于高性能EHPP和选择性双电子ORR的非晶/晶Ni/NiO异质结构的应变工程方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信