Dual Active Sites of Embedded Ni and Surface Frustrated Lewis Pairs on CeO2(110) for Efficient Photocatalytic CO2 Methanation.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-23 DOI:10.1021/acsnano.5c12967
Xiaolei Guo,Yuqi Wu,Yuhang Shao,Shengrong Zhou,Hui Song,Yasuo Izumi,Liangwei Deng,Wenguo Wang,Jinlu He,Hongwei Zhang
{"title":"Dual Active Sites of Embedded Ni and Surface Frustrated Lewis Pairs on CeO2(110) for Efficient Photocatalytic CO2 Methanation.","authors":"Xiaolei Guo,Yuqi Wu,Yuhang Shao,Shengrong Zhou,Hui Song,Yasuo Izumi,Liangwei Deng,Wenguo Wang,Jinlu He,Hongwei Zhang","doi":"10.1021/acsnano.5c12967","DOIUrl":null,"url":null,"abstract":"Developing efficient catalysts to drive the Sabatier reaction under mild conditions remains a grand challenge. Here we present an \"embedded dual active site\" strategy that exploits the strong metal-support interaction (SMSI) on the CeO2(110) surface to stabilize Ni nanoparticles, effectively integrating frustrated Lewis pair (FLP, Ce3+-O2-) sites for photocatalytic CO2 activation with adjacent Ni sites for hydrogenation. Compared to shallow Ni embedding on CeO2(111), Ni nanoparticles are embedded significantly deeper in the CeO2(110) lattice. Concurrently, surface analyses reveal that CeO2(110) more readily generates FLPs (Ce3+ and oxygen vacancy pairs) than CeO2(111). The resultant Ni10/CeO2 photocatalyst delivers a CH4 production rate of 2402.6 μmol·g-1·h-1 under UV-visible light irradiation, far exceeding the performance of control catalysts constructed on CeO2(111). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal a synergistic mechanism involving enhanced surface CO2 adsorption (adsorption energy lowered to ∼ -1.2 eV), efficient photocarrier separation, and reduced kinetic barriers for reaction intermediates, greatly promoting CO2 activation, and subsequent hydrogenation.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"353 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c12967","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient catalysts to drive the Sabatier reaction under mild conditions remains a grand challenge. Here we present an "embedded dual active site" strategy that exploits the strong metal-support interaction (SMSI) on the CeO2(110) surface to stabilize Ni nanoparticles, effectively integrating frustrated Lewis pair (FLP, Ce3+-O2-) sites for photocatalytic CO2 activation with adjacent Ni sites for hydrogenation. Compared to shallow Ni embedding on CeO2(111), Ni nanoparticles are embedded significantly deeper in the CeO2(110) lattice. Concurrently, surface analyses reveal that CeO2(110) more readily generates FLPs (Ce3+ and oxygen vacancy pairs) than CeO2(111). The resultant Ni10/CeO2 photocatalyst delivers a CH4 production rate of 2402.6 μmol·g-1·h-1 under UV-visible light irradiation, far exceeding the performance of control catalysts constructed on CeO2(111). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal a synergistic mechanism involving enhanced surface CO2 adsorption (adsorption energy lowered to ∼ -1.2 eV), efficient photocarrier separation, and reduced kinetic barriers for reaction intermediates, greatly promoting CO2 activation, and subsequent hydrogenation.
在CeO2(110)上嵌入Ni和表面受挫Lewis对的双活性位点用于高效光催化CO2甲烷化。
开发在温和条件下驱动Sabatier反应的高效催化剂仍然是一个巨大的挑战。在这里,我们提出了一种“嵌入式双活性位点”策略,利用CeO2(110)表面上的强金属-支撑相互作用(SMSI)来稳定Ni纳米粒子,有效地将受损的路易斯对(FLP, Ce3+- o2 -)位点与相邻的Ni位点集成在一起,用于光催化CO2活化。相比于Ni在CeO2(111)上的浅层嵌入,Ni纳米颗粒在CeO2(110)晶格中的嵌入深度明显加深。同时,表面分析表明CeO2(110)比CeO2(111)更容易产生FLPs (Ce3+和氧空位对)。制备的Ni10/CeO2光催化剂在紫外-可见光照射下的CH4产率为2402.6 μmol·g-1·h-1,远远超过以CeO2为基质的对照催化剂(111)。原位漫反射红外傅立叶变换光谱(DRIFTS)和密度泛函理论(DFT)计算揭示了一种协同机制,包括增强表面CO2吸附(吸附能降至~ -1.2 eV)、有效的光载流子分离和降低反应中间体的动力学障碍,极大地促进了CO2的活化和随后的氢化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信