Daniyal Kiani,Ross Eaglesfield,James H May,Allison Z Werner,Eugene Y-X Chen,Yuriy Román-Leshkov,Yomaira J Pagán-Torres,Gregg T Beckham
{"title":"Production of bio-based lactones as monomers for a circular polymer economy.","authors":"Daniyal Kiani,Ross Eaglesfield,James H May,Allison Z Werner,Eugene Y-X Chen,Yuriy Román-Leshkov,Yomaira J Pagán-Torres,Gregg T Beckham","doi":"10.1038/s41570-025-00765-9","DOIUrl":null,"url":null,"abstract":"To create a circular plastics economy, new polymers are being developed that can be chemically recycled. Circular polyesters are of particular interest and to this end, lactones are ideal monomers. This Review examines catalytic routes to convert diols, hydroxy acids, and dicarboxylic acids to lactones, focusing on the development of scalable, atom-economic, and energy-efficient conversions of bio-derived feedstocks. Free energy analysis is used to inform process choices, such as reactor type, reaction phase, and use of solvent. Catalyst design principles are summarized for both direct (bio-substrate to lactone) and indirect (bio-substrate to intermediate to lactone) routes. Finally, we summarize literature that shows that many lactone precursors are readily accessible from various metabolic and chemo-catalytic pathways. Transitioning to bio-based monomers offers an opportunity to reduce reliance on fossil carbon resources, but requires advanced catalytic processes informed by mechanistic insights.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"136 1","pages":""},"PeriodicalIF":51.7000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-025-00765-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To create a circular plastics economy, new polymers are being developed that can be chemically recycled. Circular polyesters are of particular interest and to this end, lactones are ideal monomers. This Review examines catalytic routes to convert diols, hydroxy acids, and dicarboxylic acids to lactones, focusing on the development of scalable, atom-economic, and energy-efficient conversions of bio-derived feedstocks. Free energy analysis is used to inform process choices, such as reactor type, reaction phase, and use of solvent. Catalyst design principles are summarized for both direct (bio-substrate to lactone) and indirect (bio-substrate to intermediate to lactone) routes. Finally, we summarize literature that shows that many lactone precursors are readily accessible from various metabolic and chemo-catalytic pathways. Transitioning to bio-based monomers offers an opportunity to reduce reliance on fossil carbon resources, but requires advanced catalytic processes informed by mechanistic insights.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.