Skyler Friedline,Elizabeth A McDaniel,Matthew Scarborough,Maxwell Madill,Kate Waring,Vivian S Lin,Rex R Malmstrom,Danielle Goudeau,William Chrisler,Morten K D Dueholm,Leo J Gorham,Chathuri J Kombala,Lydia H Griggs,Heather M Olson,Sophie B Lehmann,Nathalie Munoz,Jesse Trejo,Nikola Tolic,Ljiljana Pasa-Tolic,Sarah M Williams,Mary Lipton,Steven J Hallam,Ryan M Ziels
{"title":"Activity-targeted metaproteomics uncovers rare syntrophic bacteria central to anaerobic community metabolism.","authors":"Skyler Friedline,Elizabeth A McDaniel,Matthew Scarborough,Maxwell Madill,Kate Waring,Vivian S Lin,Rex R Malmstrom,Danielle Goudeau,William Chrisler,Morten K D Dueholm,Leo J Gorham,Chathuri J Kombala,Lydia H Griggs,Heather M Olson,Sophie B Lehmann,Nathalie Munoz,Jesse Trejo,Nikola Tolic,Ljiljana Pasa-Tolic,Sarah M Williams,Mary Lipton,Steven J Hallam,Ryan M Ziels","doi":"10.1038/s41564-025-02146-w","DOIUrl":null,"url":null,"abstract":"Syntrophic microbial consortia can contribute substantially to the activity of anoxic ecosystems but are often too rare to allow the study of their in situ physiologies using traditional molecular methods. Here we combined bioorthogonal non-canonical amino acid tagging (BONCAT), stable isotope probing and metaproteomics to improve the recovery of proteins from active members and track isotope incorporation in an anaerobic digestion community. Click-chemistry-enabled cell sorting and direct protein pull-down coupled to metaproteomics improved recovery of isotopically labelled proteins during anaerobic acetate oxidation. BONCAT-enabled protein profiles revealed elevated activity and labelling of a rare and so-far uncharacterized syntrophic bacterium belonging to the family Natronincolaceae that expressed a previously hypothesized oxidative glycine pathway for syntrophic acetate oxidation. Stable-isotope-probing-informed metabolic modelling predicted that this organism accounted for a majority of acetate flux, suggesting that the oxidative glycine pathway is an important route for anaerobic carbon transformation and is probably central to community metabolism in natural and engineered ecosystems.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"208-209 1","pages":""},"PeriodicalIF":19.4000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-02146-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Syntrophic microbial consortia can contribute substantially to the activity of anoxic ecosystems but are often too rare to allow the study of their in situ physiologies using traditional molecular methods. Here we combined bioorthogonal non-canonical amino acid tagging (BONCAT), stable isotope probing and metaproteomics to improve the recovery of proteins from active members and track isotope incorporation in an anaerobic digestion community. Click-chemistry-enabled cell sorting and direct protein pull-down coupled to metaproteomics improved recovery of isotopically labelled proteins during anaerobic acetate oxidation. BONCAT-enabled protein profiles revealed elevated activity and labelling of a rare and so-far uncharacterized syntrophic bacterium belonging to the family Natronincolaceae that expressed a previously hypothesized oxidative glycine pathway for syntrophic acetate oxidation. Stable-isotope-probing-informed metabolic modelling predicted that this organism accounted for a majority of acetate flux, suggesting that the oxidative glycine pathway is an important route for anaerobic carbon transformation and is probably central to community metabolism in natural and engineered ecosystems.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.