Dual-Engineered DPP Polymers: Synergistic Hydrogen Bonding and Ring-Fusion for High-Mobility Organic Field-Effect Transistors.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaoyang Chen,Rui Li,Qianhui Jia,Junhao Deng,Dongxu Liang,Lan Cao,Jun Zhang,Cheng Wang,Jian Hu,Yongqiang Shi,Haichang Zhang
{"title":"Dual-Engineered DPP Polymers: Synergistic Hydrogen Bonding and Ring-Fusion for High-Mobility Organic Field-Effect Transistors.","authors":"Zhaoyang Chen,Rui Li,Qianhui Jia,Junhao Deng,Dongxu Liang,Lan Cao,Jun Zhang,Cheng Wang,Jian Hu,Yongqiang Shi,Haichang Zhang","doi":"10.1002/anie.202514768","DOIUrl":null,"url":null,"abstract":"Developing simple and effective molecular design strategies to optimize charge transport mobility remains a key challenge in high-performance organic semiconductors. In this study, we integrate hydrogen bonding (H-B) and ring-fusion (R-F) into a diketopyrrolopyrrole (DPP)-based polymer, yielding a novel material, P-HF. For comparison, a reference polymer (P-B) and a hydrogen-bonded analogue (P-H) were synthesized. The synergistic effects of H-B and R-F dramatically not only enhance both inter- and intramolecular charge transport but also optimize the frontier orbital levels; H-B strengthens intermolecular interactions, enabling localized ordered molecular packing and tighter π-π stacking, while R-F further amplifies these effects meanwhile improving backbone planarity, extending π-conjugation, and optimizing frontier orbital levels. As a result, P-HF achieves an outstanding hole mobility of 5.02 cm2 V-1 s-1, surpassing P-B (0.71 cm2 V-1 s-1) and P-H (2.13 cm2 V-1 s-1), placing it among the highest-performing DPP-based polymers reported. This work demonstrates that combining R-F and H-B offers a viable strategy for designing high-mobility conjugated materials, potentially advancing organic semiconductor development. This dual-engineering strategy is particularly suitable for π-conjugated polymers containing both hydrogen-bonding sites and ring-fused backbones.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"200 1","pages":"e202514768"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202514768","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing simple and effective molecular design strategies to optimize charge transport mobility remains a key challenge in high-performance organic semiconductors. In this study, we integrate hydrogen bonding (H-B) and ring-fusion (R-F) into a diketopyrrolopyrrole (DPP)-based polymer, yielding a novel material, P-HF. For comparison, a reference polymer (P-B) and a hydrogen-bonded analogue (P-H) were synthesized. The synergistic effects of H-B and R-F dramatically not only enhance both inter- and intramolecular charge transport but also optimize the frontier orbital levels; H-B strengthens intermolecular interactions, enabling localized ordered molecular packing and tighter π-π stacking, while R-F further amplifies these effects meanwhile improving backbone planarity, extending π-conjugation, and optimizing frontier orbital levels. As a result, P-HF achieves an outstanding hole mobility of 5.02 cm2 V-1 s-1, surpassing P-B (0.71 cm2 V-1 s-1) and P-H (2.13 cm2 V-1 s-1), placing it among the highest-performing DPP-based polymers reported. This work demonstrates that combining R-F and H-B offers a viable strategy for designing high-mobility conjugated materials, potentially advancing organic semiconductor development. This dual-engineering strategy is particularly suitable for π-conjugated polymers containing both hydrogen-bonding sites and ring-fused backbones.
双工程DPP聚合物:高迁移率有机场效应晶体管的协同氢键和环融合。
开发简单有效的分子设计策略来优化电荷输运迁移率仍然是高性能有机半导体的关键挑战。在这项研究中,我们将氢键(H-B)和环融合(R-F)整合到二酮吡咯(DPP)基聚合物中,得到了一种新型材料P-HF。为了比较,我们合成了一种参考聚合物(P-B)和一种氢键类似物(P-H)。H-B和R-F的协同效应不仅显著增强了分子间和分子内的电荷输运,而且优化了前沿轨道能级;H-B增强了分子间的相互作用,实现了分子的局域有序堆积和更紧密的π-π堆积,而R-F进一步增强了这些作用,同时提高了主链平面度,扩展了π共轭作用,优化了前沿轨道能级。结果,P-HF的空穴迁移率达到了5.02 cm2 V-1 s-1,超过了P-B (0.71 cm2 V-1 s-1)和P-H (2.13 cm2 V-1 s-1),成为目前报道的性能最高的dpp基聚合物之一。这项工作表明,结合R-F和H-B为设计高迁移率共轭材料提供了一种可行的策略,有可能推动有机半导体的发展。这种双工程策略特别适用于同时含有氢键位点和环融合骨架的π共轭聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信