{"title":"Inner Ear Organoids: A Hydrogel-Based Platform for Drug Screening and Deafness Modeling.","authors":"Yuyu Cao, Xiaotao Liu, Renjie Chai, Zuhong He","doi":"10.1007/s12264-025-01479-0","DOIUrl":null,"url":null,"abstract":"<p><p>This review highlights advances in inner ear organoids (IEOs) as a novel platform for drug screening and disease modeling, particularly for hearing loss. IEOs, derived from embryonic stem cells, induced pluripotent stem cells, or tissue-specific progenitors, provide a physiologically relevant alternative to traditional animal models. Significant progress has been made in utilizing various cell sources, extracellular matrix materials such as Matrigel and hydrogels, and methods for controlling microenvironments through biochemical and biophysical signals. Applications of IEOs in drug screening, disease modeling, and personalized medicine enable exploration of hearing loss mechanisms and therapeutic testing. However, challenges remain, including the incomplete maturation of cochlear cells and difficulty replicating in vivo environments. Future research should focus on optimizing IEO generation, incorporating microfluidic technologies, and advancing high-throughput screening to enhance drug discovery and clinical translation.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01479-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This review highlights advances in inner ear organoids (IEOs) as a novel platform for drug screening and disease modeling, particularly for hearing loss. IEOs, derived from embryonic stem cells, induced pluripotent stem cells, or tissue-specific progenitors, provide a physiologically relevant alternative to traditional animal models. Significant progress has been made in utilizing various cell sources, extracellular matrix materials such as Matrigel and hydrogels, and methods for controlling microenvironments through biochemical and biophysical signals. Applications of IEOs in drug screening, disease modeling, and personalized medicine enable exploration of hearing loss mechanisms and therapeutic testing. However, challenges remain, including the incomplete maturation of cochlear cells and difficulty replicating in vivo environments. Future research should focus on optimizing IEO generation, incorporating microfluidic technologies, and advancing high-throughput screening to enhance drug discovery and clinical translation.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.