CELLECT: contrastive embedding learning for large-scale efficient cell tracking.

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Hongyu Zhou, Seonghoon Kim, Zhifeng Zhao, Jiaqi Fan, Wen Huang, Xinghua Sui, Lizhi Shao, Haoran An, Jing-Ren Zhang, Jiamin Wu, Qionghai Dai
{"title":"CELLECT: contrastive embedding learning for large-scale efficient cell tracking.","authors":"Hongyu Zhou, Seonghoon Kim, Zhifeng Zhao, Jiaqi Fan, Wen Huang, Xinghua Sui, Lizhi Shao, Haoran An, Jing-Ren Zhang, Jiamin Wu, Qionghai Dai","doi":"10.1038/s41592-025-02886-x","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative analysis of large-scale cellular behaviors plays an increasingly crucial role in understanding mechanisms of diverse physiopathological processes, but achieving cell tracking with both high performance and efficiency in practical applications remains a challenge. Here we introduce CELLECT, a contrastive embedding learning method for large-scale efficient cell tracking, and demonstrate it on the Caenorhabditis elegans dataset in the Cell Tracking Challenge. By contrastive learning of latent embeddings of diverse cellular structures, a CELLECT model pretrained on a single public dataset can be effectively applied across different imaging modalities and species with broad generalization. Using advanced two-photon imaging, CELLECT enables real-time 3D tracking of large-scale B cells with frequent divisions during germinal center formation in a mouse lymph node, quantitative identification of cell-bacterium interactions in the mouse spleen and high-fidelity extraction of neural signals during strong nonrigid motions. We believe that these results demonstrate broad applications of CELLECT in immunology, pathology and neuroscience.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02886-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative analysis of large-scale cellular behaviors plays an increasingly crucial role in understanding mechanisms of diverse physiopathological processes, but achieving cell tracking with both high performance and efficiency in practical applications remains a challenge. Here we introduce CELLECT, a contrastive embedding learning method for large-scale efficient cell tracking, and demonstrate it on the Caenorhabditis elegans dataset in the Cell Tracking Challenge. By contrastive learning of latent embeddings of diverse cellular structures, a CELLECT model pretrained on a single public dataset can be effectively applied across different imaging modalities and species with broad generalization. Using advanced two-photon imaging, CELLECT enables real-time 3D tracking of large-scale B cells with frequent divisions during germinal center formation in a mouse lymph node, quantitative identification of cell-bacterium interactions in the mouse spleen and high-fidelity extraction of neural signals during strong nonrigid motions. We believe that these results demonstrate broad applications of CELLECT in immunology, pathology and neuroscience.

CELLECT:用于大规模高效细胞跟踪的对比嵌入学习。
大规模细胞行为的定量分析在理解各种生理病理过程的机制方面发挥着越来越重要的作用,但在实际应用中实现高性能和高效率的细胞跟踪仍然是一个挑战。在这里,我们介绍了CELLECT,一种用于大规模高效细胞跟踪的对比嵌入学习方法,并在细胞跟踪挑战中的秀丽隐杆线虫数据集上进行了演示。通过对不同细胞结构的潜在嵌入进行对比学习,在单一公共数据集上预训练的CELLECT模型可以有效地应用于不同的成像方式和物种,具有广泛的泛化性。利用先进的双光子成像技术,CELLECT能够实时3D跟踪小鼠淋巴结生发中心形成过程中频繁分裂的大规模B细胞,定量鉴定小鼠脾脏中细胞-细菌相互作用,并在强非刚性运动中高保真提取神经信号。我们相信这些结果证明了CELLECT在免疫学、病理学和神经科学方面的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信