Electron-injected Pd@CeO2 nanozymes for multifaceted ROS scavenging and protection against ischemia-reperfusion injury in skin flaps.

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lingling Zhou, Jiayuan Sun, Tianxiang Lu, Xinya Zhang, Mingkang Wang, Yanjun Xu, Jia Zhou, Xiaoyang Li, Wenxian Du, Fan Yang, Yuehua Li
{"title":"Electron-injected Pd@CeO<sub>2</sub> nanozymes for multifaceted ROS scavenging and protection against ischemia-reperfusion injury in skin flaps.","authors":"Lingling Zhou, Jiayuan Sun, Tianxiang Lu, Xinya Zhang, Mingkang Wang, Yanjun Xu, Jia Zhou, Xiaoyang Li, Wenxian Du, Fan Yang, Yuehua Li","doi":"10.1186/s12951-025-03775-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion (I/R) injury in skin flap transplantation causes acute oxidative damage and inflammation, leading to high failure rates and tissue necrosis. Herein, we present a core-shell Pd@CeO<sub>2</sub> nanozymes that addresses this challenge via a unique electron-injection mechanism across the Pd-CeO<sub>2</sub> interface, conferring unprecedented antioxidant and anti-inflammatory potency. Constructed by confining Pd clusters within a ceria matrix, this nanozyme combines catalase- and superoxide dismutase-like catalytic activities for robust reactive oxygen species (ROS) scavenging. In vitro, Pd@CeO<sub>2</sub> rapidly neutralizes ROS, preventing oxidative cell death by reducing apoptosis and dampening inflammatory signaling, while restoring angiogenic potential. In a rat skin flap I/R model, Pd@CeO<sub>2</sub> significantly improves flap survival and microvascular regeneration while concurrently reducing tissue necrosis, apoptosis, and inflammation, with no observable toxicity. By simultaneously alleviating oxidative stress, cell death, inflammation, and vascular dysfunction, this nanozyme offers a comprehensive therapeutic strategy against I/R injury. This work introduces a new paradigm for nanozyme-based cytoprotection in transplantation, with potential applicability to other ischemic injuries.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"686"},"PeriodicalIF":12.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12538877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03775-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemia-reperfusion (I/R) injury in skin flap transplantation causes acute oxidative damage and inflammation, leading to high failure rates and tissue necrosis. Herein, we present a core-shell Pd@CeO2 nanozymes that addresses this challenge via a unique electron-injection mechanism across the Pd-CeO2 interface, conferring unprecedented antioxidant and anti-inflammatory potency. Constructed by confining Pd clusters within a ceria matrix, this nanozyme combines catalase- and superoxide dismutase-like catalytic activities for robust reactive oxygen species (ROS) scavenging. In vitro, Pd@CeO2 rapidly neutralizes ROS, preventing oxidative cell death by reducing apoptosis and dampening inflammatory signaling, while restoring angiogenic potential. In a rat skin flap I/R model, Pd@CeO2 significantly improves flap survival and microvascular regeneration while concurrently reducing tissue necrosis, apoptosis, and inflammation, with no observable toxicity. By simultaneously alleviating oxidative stress, cell death, inflammation, and vascular dysfunction, this nanozyme offers a comprehensive therapeutic strategy against I/R injury. This work introduces a new paradigm for nanozyme-based cytoprotection in transplantation, with potential applicability to other ischemic injuries.

电子注射Pd@CeO2纳米酶在皮肤皮瓣的多面活性氧清除和保护缺血再灌注损伤。
皮瓣移植缺血再灌注(I/R)损伤可引起急性氧化损伤和炎症反应,导致高失败率和组织坏死。在此,我们提出了一种核壳Pd@CeO2纳米酶,通过独特的电子注入机制在Pd-CeO2界面上解决了这一挑战,赋予了前所未有的抗氧化和抗炎能力。这种纳米酶通过将Pd簇限制在铈基体中构建,结合了过氧化氢酶和超氧化物歧化酶的催化活性,具有强大的活性氧(ROS)清除能力。在体外,Pd@CeO2可以快速中和ROS,通过减少细胞凋亡和抑制炎症信号传导来防止氧化细胞死亡,同时恢复血管生成潜能。在大鼠皮瓣I/R模型中,Pd@CeO2显著提高皮瓣存活率和微血管再生,同时减少组织坏死、细胞凋亡和炎症,无明显毒性。通过同时减轻氧化应激、细胞死亡、炎症和血管功能障碍,这种纳米酶提供了一种针对I/R损伤的综合治疗策略。这项工作为移植中基于纳米酶的细胞保护提供了一种新的范例,可能适用于其他缺血性损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信