A Sandwich-Like Coating for Dynamic Cerium Oxide Nanoparticles Delivery: Enhancing Osseointegration of Titanium Implants in Oxidative Microenvironment.
{"title":"A Sandwich-Like Coating for Dynamic Cerium Oxide Nanoparticles Delivery: Enhancing Osseointegration of Titanium Implants in Oxidative Microenvironment.","authors":"Ya-Nan Yao, Ya-Wen Zhu, Yu-Wen Wei, Xuan Zhou, Shu-di Li, Jing-Yi Ma, Jing Qiu","doi":"10.1002/adhm.202502889","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive reactive oxygen species (ROS) around titanium implants under pathological conditions can cause mitochondrial dysfunction, potentially resulting in implant failure or related complications. This study designs a titanium implant functionalized with cerium oxide nanoparticles (CeNPs) using phenylboronic acid-modified hyaluronic acid (HA-PBA) and carboxylated chitosan (CCS) as polyelectrolytes, with the primary objective of modulating the local microenvironment around the implant. Owing to the responsive properties of HA-PBA, the embedded CeNPs are released in an on-demand manner as the coating degrades under different conditions. The Ti-HAPBA/CCS-CeNPs implants not only directly stimulate osteoblast differentiation under physiological conditions but also mitigate oxidative stress-induced mitochondrial dynamics imbalance and dysfunction. This protective effect is achieved by scavenging intracellular ROS, downregulating DRP1 expression, and restoring mitochondrial membrane potential (MMP). The osteoinductive efficacy of the Ti-HAPBA/CCS-CeNPs implants is further assessed using a femoral implantation model in diabetic rats, which demonstrates significantly enhanced bone remodeling and osseointegration at four and eight weeks post-implantation compared to the Ti-SLA group. Collectively, this study demonstrates the therapeutic potential of Ti-HAPBA/CCS-CeNPs implants under both physiological and pathological conditions, and provides a novel biopolymer-based strategy for improving dental implant outcomes.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02889"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502889","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive reactive oxygen species (ROS) around titanium implants under pathological conditions can cause mitochondrial dysfunction, potentially resulting in implant failure or related complications. This study designs a titanium implant functionalized with cerium oxide nanoparticles (CeNPs) using phenylboronic acid-modified hyaluronic acid (HA-PBA) and carboxylated chitosan (CCS) as polyelectrolytes, with the primary objective of modulating the local microenvironment around the implant. Owing to the responsive properties of HA-PBA, the embedded CeNPs are released in an on-demand manner as the coating degrades under different conditions. The Ti-HAPBA/CCS-CeNPs implants not only directly stimulate osteoblast differentiation under physiological conditions but also mitigate oxidative stress-induced mitochondrial dynamics imbalance and dysfunction. This protective effect is achieved by scavenging intracellular ROS, downregulating DRP1 expression, and restoring mitochondrial membrane potential (MMP). The osteoinductive efficacy of the Ti-HAPBA/CCS-CeNPs implants is further assessed using a femoral implantation model in diabetic rats, which demonstrates significantly enhanced bone remodeling and osseointegration at four and eight weeks post-implantation compared to the Ti-SLA group. Collectively, this study demonstrates the therapeutic potential of Ti-HAPBA/CCS-CeNPs implants under both physiological and pathological conditions, and provides a novel biopolymer-based strategy for improving dental implant outcomes.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.