Above-Room-Temperature Ferromagnetism in Large-Scale Epitaxial Fe3GaTe2/Graphene van der Waals Heterostructures.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-21 DOI:10.1021/acsnano.5c07732
Tauqir Shinwari, Kacho Imtiyaz Ali Khan, Hua Lv, Atekelte Abebe Kassa, Frans Munnik, Simon Josephy, Achim Trampert, Victor Ukleev, Chen Luo, Florin Radu, Jens Herfort, Michael Hanke, Joao Marcelo Jordao Lopes
{"title":"Above-Room-Temperature Ferromagnetism in Large-Scale Epitaxial Fe<sub>3</sub>GaTe<sub>2</sub>/Graphene van der Waals Heterostructures.","authors":"Tauqir Shinwari, Kacho Imtiyaz Ali Khan, Hua Lv, Atekelte Abebe Kassa, Frans Munnik, Simon Josephy, Achim Trampert, Victor Ukleev, Chen Luo, Florin Radu, Jens Herfort, Michael Hanke, Joao Marcelo Jordao Lopes","doi":"10.1021/acsnano.5c07732","DOIUrl":null,"url":null,"abstract":"<p><p>Fe<sub>3</sub>GaTe<sub>2</sub> (FGaT), a two-dimensional (2D) layered ferromagnetic metal, exhibits a high Curie temperature (<i>T</i><sub>C</sub>) of ∼360 K along with strong perpendicular magnetic anisotropy (PMA), making it a promising material candidate for next-generation energy-efficient magnetic devices. However, the vast majority of studies on FGaT to date have been limited to millimeter-sized bulk crystals and exfoliated flakes, which are unsuitable for practical applications and integration into device processing. Also, its combination with other 2D materials to form van der Waals (vdW) heterostructures has only been achieved by flake stacking. Consequently, the controlled large-area growth of FGaT and related heterostructures remains largely unexplored. In this work, we demonstrate the high-quality, large-area growth of epitaxial FGaT thin films on single-crystalline graphene/SiC templates using molecular beam epitaxy. Structural characterization confirms the high crystalline quality of the continuous FGaT/graphene vdW heterostructures. Temperature-dependent magnetization and anomalous Hall measurements reveal robust PMA with an enhanced <i>T</i><sub>C</sub> well above room temperature, reaching up to 400 K. Furthermore, X-ray absorption and X-ray magnetic circular dichroism spectra provide insight into the spin and orbital magnetic moment contributions, further validating the high <i>T</i><sub>C</sub> and robust PMA. These findings are highly significant for the future development of high-performance spintronic devices based on 2D heterostructures, with potential applications in next-generation data storage, logic processing, and quantum technologies.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c07732","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fe3GaTe2 (FGaT), a two-dimensional (2D) layered ferromagnetic metal, exhibits a high Curie temperature (TC) of ∼360 K along with strong perpendicular magnetic anisotropy (PMA), making it a promising material candidate for next-generation energy-efficient magnetic devices. However, the vast majority of studies on FGaT to date have been limited to millimeter-sized bulk crystals and exfoliated flakes, which are unsuitable for practical applications and integration into device processing. Also, its combination with other 2D materials to form van der Waals (vdW) heterostructures has only been achieved by flake stacking. Consequently, the controlled large-area growth of FGaT and related heterostructures remains largely unexplored. In this work, we demonstrate the high-quality, large-area growth of epitaxial FGaT thin films on single-crystalline graphene/SiC templates using molecular beam epitaxy. Structural characterization confirms the high crystalline quality of the continuous FGaT/graphene vdW heterostructures. Temperature-dependent magnetization and anomalous Hall measurements reveal robust PMA with an enhanced TC well above room temperature, reaching up to 400 K. Furthermore, X-ray absorption and X-ray magnetic circular dichroism spectra provide insight into the spin and orbital magnetic moment contributions, further validating the high TC and robust PMA. These findings are highly significant for the future development of high-performance spintronic devices based on 2D heterostructures, with potential applications in next-generation data storage, logic processing, and quantum technologies.

大规模外延Fe3GaTe2/石墨烯范德华异质结构的室温以上铁磁性。
Fe3GaTe2 (FGaT)是一种二维(2D)层状铁磁金属,具有高达~ 360 K的高居里温度(TC)以及强垂直磁各向异性(PMA),使其成为下一代节能磁性器件的有前途的候选材料。然而,到目前为止,绝大多数关于FGaT的研究都局限于毫米大小的块状晶体和剥落片,不适合实际应用和集成到器件加工中。此外,它与其他二维材料结合形成范德华(vdW)异质结构只能通过薄片堆叠来实现。因此,控制大面积生长的FGaT和相关异质结构在很大程度上仍未被探索。在这项工作中,我们展示了使用分子束外延技术在单晶石墨烯/SiC模板上高质量、大面积生长外延FGaT薄膜。结构表征证实了连续FGaT/石墨烯vdW异质结构的高结晶质量。温度相关磁化和异常霍尔测量显示,在室温以上的温度下,PMA具有增强的TC,高达400k。此外,x射线吸收光谱和x射线磁圆二色光谱提供了对自旋和轨道磁矩贡献的深入了解,进一步验证了高TC和强大的PMA。这些发现对于基于二维异质结构的高性能自旋电子器件的未来发展具有重要意义,在下一代数据存储、逻辑处理和量子技术中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信