In Situ Visualization of Electron Beam-Driven High-Entropy Alloy Crystallization.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Azadeh Amiri, Reza Shahbazian-Yassar
{"title":"In Situ Visualization of Electron Beam-Driven High-Entropy Alloy Crystallization.","authors":"Azadeh Amiri, Reza Shahbazian-Yassar","doi":"10.1002/advs.202512587","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving compositionally uniform high-entropy alloy (HEA) nanoparticles via reduction-based synthesis remains challenging due to variations in elemental reduction, diffusion, and phase stability. Using in situ transmission electron microscopy (TEM), this study visualizes the electron beam-induced crystallization of amorphous high-entropy glycerolate (HE-glycerolate) films composed of Mg, Mn, Co, Ni, and Zn. The transformation proceeds through phase separation, radiolytic reduction, and localized atomic rearrangement, producing single-phase face-centered cubic (fcc) HEA nanoparticles with uniform cuboidal morphology and dominant {100} facets. Compared to thermal annealing, the electron beam pathway offers finer control over composition and morphology by limiting atomic mobility and preventing phase segregation or Co/Ni clustering. This displacement-driven, athermal process enables gradual, diffusion-limited crystallization within confined regions, resulting in well-defined, compositionally homogeneous alloys. The study reveals the mechanism of electron beam-driven crystallization of HEA nanoparticles and establishes a broader principle that controlling atomic mobility is key to achieving stable, multielement solid solutions. The insights gained, highlighting the role of confined atomic mobility, offer a valuable foundation for designing new low-temperature synthesis routes for uniform HEA materials with controlled phase and morphology, and inform the development of scalable processing strategies for homogeneous multicomponent systems.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e12587"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202512587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving compositionally uniform high-entropy alloy (HEA) nanoparticles via reduction-based synthesis remains challenging due to variations in elemental reduction, diffusion, and phase stability. Using in situ transmission electron microscopy (TEM), this study visualizes the electron beam-induced crystallization of amorphous high-entropy glycerolate (HE-glycerolate) films composed of Mg, Mn, Co, Ni, and Zn. The transformation proceeds through phase separation, radiolytic reduction, and localized atomic rearrangement, producing single-phase face-centered cubic (fcc) HEA nanoparticles with uniform cuboidal morphology and dominant {100} facets. Compared to thermal annealing, the electron beam pathway offers finer control over composition and morphology by limiting atomic mobility and preventing phase segregation or Co/Ni clustering. This displacement-driven, athermal process enables gradual, diffusion-limited crystallization within confined regions, resulting in well-defined, compositionally homogeneous alloys. The study reveals the mechanism of electron beam-driven crystallization of HEA nanoparticles and establishes a broader principle that controlling atomic mobility is key to achieving stable, multielement solid solutions. The insights gained, highlighting the role of confined atomic mobility, offer a valuable foundation for designing new low-temperature synthesis routes for uniform HEA materials with controlled phase and morphology, and inform the development of scalable processing strategies for homogeneous multicomponent systems.

电子束驱动高熵合金结晶的原位可视化。
由于元素还原、扩散和相稳定性的变化,通过还原合成获得成分均匀的高熵合金(HEA)纳米颗粒仍然具有挑战性。利用原位透射电子显微镜(TEM),本研究可视化了由Mg, Mn, Co, Ni和Zn组成的无定形高熵甘油(HE-glycerolate)薄膜的电子束诱导结晶过程。转变通过相分离、辐射还原和局部原子重排进行,产生具有均匀立方形态和优势{100}面的单相面心立方(fcc) HEA纳米颗粒。与热退火相比,电子束途径通过限制原子迁移率和防止相偏析或Co/Ni聚类,可以更好地控制成分和形貌。这种驱替驱动的非热过程使得在受限区域内逐渐、限制扩散的结晶成为可能,从而得到定义明确、成分均匀的合金。该研究揭示了电子束驱动HEA纳米颗粒结晶的机理,并建立了一个更广泛的原理,即控制原子迁移率是获得稳定的多元素固溶体的关键。所获得的见解,突出了限制原子迁移率的作用,为设计具有控制相和形态的均匀HEA材料的新低温合成路线提供了有价值的基础,并为同质多组分系统的可扩展加工策略的发展提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信