Micro–Macro Performance of Naturally Aging Amorphous Silicon Photovoltaics From BIPV Applications

IF 7.6 2区 材料科学 Q1 ENERGY & FUELS
Jianhui Hu, Jian Zhang, Zhi Zheng, Wujun Chen, Yi Xu, Saishuai Huang, Jian Lu, Wanwu Guo, Takhir Razykov, Kazuki Hayashi
{"title":"Micro–Macro Performance of Naturally Aging Amorphous Silicon Photovoltaics From BIPV Applications","authors":"Jianhui Hu,&nbsp;Jian Zhang,&nbsp;Zhi Zheng,&nbsp;Wujun Chen,&nbsp;Yi Xu,&nbsp;Saishuai Huang,&nbsp;Jian Lu,&nbsp;Wanwu Guo,&nbsp;Takhir Razykov,&nbsp;Kazuki Hayashi","doi":"10.1002/pip.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Amorphous silicon thin-film photovoltaics have been widely utilized in building-integrated photovoltaics (BIPV) due to their advantages of lightweight, flexible, and easily transportable properties. However, long-term exposure to natural environmental conditions leads to the gradual degradation of their properties. To investigate the effects of aging on the mechanical performance and stress-related electrothermal reduction of these photovoltaics, this study selects naturally aged amorphous silicon thin-film photovoltaics as the research subject. Uniaxial tensile tests and microscopic morphology characterization were conducted to analyze specimen mechanical behavior throughout the full loading process and to reveal the mechanisms influencing temperature and voltage responses. Experimental results indicate that the aged photovoltaics exhibit an elastic modulus of 4108 MPa and a tensile strength of 49.86 MPa. Structural failure occurs due to the fracture of the stainless steel substrate during loading, while electrical failure and temperature decrease are observed prior to the yielding stage, with the temperature drop occurring after electrical failure. Electro–thermal–mechanical response reveals that the loss of photovoltaic capability leads to a reduction in internal current, which subsequently induces the temperature decrease. These findings can provide valuable insights for evaluating the long-term operational performance and safety of building-integrated photovoltaics.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 11","pages":"1211-1222"},"PeriodicalIF":7.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.70015","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous silicon thin-film photovoltaics have been widely utilized in building-integrated photovoltaics (BIPV) due to their advantages of lightweight, flexible, and easily transportable properties. However, long-term exposure to natural environmental conditions leads to the gradual degradation of their properties. To investigate the effects of aging on the mechanical performance and stress-related electrothermal reduction of these photovoltaics, this study selects naturally aged amorphous silicon thin-film photovoltaics as the research subject. Uniaxial tensile tests and microscopic morphology characterization were conducted to analyze specimen mechanical behavior throughout the full loading process and to reveal the mechanisms influencing temperature and voltage responses. Experimental results indicate that the aged photovoltaics exhibit an elastic modulus of 4108 MPa and a tensile strength of 49.86 MPa. Structural failure occurs due to the fracture of the stainless steel substrate during loading, while electrical failure and temperature decrease are observed prior to the yielding stage, with the temperature drop occurring after electrical failure. Electro–thermal–mechanical response reveals that the loss of photovoltaic capability leads to a reduction in internal current, which subsequently induces the temperature decrease. These findings can provide valuable insights for evaluating the long-term operational performance and safety of building-integrated photovoltaics.

Abstract Image

自然老化非晶硅光伏材料的微观宏观性能研究
非晶硅薄膜光伏材料由于其轻便、灵活、易运输等优点,在建筑集成光伏中得到了广泛的应用。然而,长期暴露在自然环境条件下会导致其性能逐渐退化。为了研究老化对非晶硅薄膜光伏电池的力学性能和应力相关电热还原的影响,本研究选择自然老化的非晶硅薄膜光伏电池作为研究对象。通过单轴拉伸试验和微观形貌表征,分析了试件在全加载过程中的力学行为,揭示了影响温度和电压响应的机制。实验结果表明,老化后的光伏材料弹性模量为4108 MPa,抗拉强度为49.86 MPa。加载过程中不锈钢基体断裂导致结构失效,屈服阶段前出现电气失效和温度下降,电气失效后出现温度下降。电热机械响应表明,光伏能力的丧失导致内部电流的减小,从而导致温度的降低。这些发现可以为评估建筑集成光伏的长期运行性能和安全性提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信