{"title":"DOROS: A multilevel traffic dataset for dynamic urban scene understanding","authors":"Jungyu Kang, Kyoung-Wook Min, Sangyoun Lee","doi":"10.4218/etrij.2025-0063","DOIUrl":null,"url":null,"abstract":"<p>Advancements in autonomous vehicles and smart traffic systems require vision datasets capable of capturing complex interactions and dynamic behaviors in real-world urban environments. Although datasets such as COCO, Cityscapes, and ROAD have advanced object detection, segmentation, and action recognition, they often treat scene elements in isolation, thereby limiting their use for comprehensive understanding. This paper presents DOROS, a dataset with multilevel annotations across <i>Agent</i>, <i>Location</i>, and <i>Behavior</i> categories. DOROS is designed to support compositional reasoning under diverse traffic conditions. An annotation pipeline combining foundation models with structured human refinement ensures consistent, high-quality supervision. To support structured evaluation, we introduce the <i>Combined mAP</i>(<i>mask</i>) metric, which assesses instance segmentation under strict category-level label matching while mitigating the effects of class imbalance. Extensive experiments, including ablation studies and transformer-based baselines, validate DOROS as a resource for structured scene understanding in complex traffic scenarios. The dataset and code will be released upon publication.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 5","pages":"830-840"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2025-0063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2025-0063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in autonomous vehicles and smart traffic systems require vision datasets capable of capturing complex interactions and dynamic behaviors in real-world urban environments. Although datasets such as COCO, Cityscapes, and ROAD have advanced object detection, segmentation, and action recognition, they often treat scene elements in isolation, thereby limiting their use for comprehensive understanding. This paper presents DOROS, a dataset with multilevel annotations across Agent, Location, and Behavior categories. DOROS is designed to support compositional reasoning under diverse traffic conditions. An annotation pipeline combining foundation models with structured human refinement ensures consistent, high-quality supervision. To support structured evaluation, we introduce the Combined mAP(mask) metric, which assesses instance segmentation under strict category-level label matching while mitigating the effects of class imbalance. Extensive experiments, including ablation studies and transformer-based baselines, validate DOROS as a resource for structured scene understanding in complex traffic scenarios. The dataset and code will be released upon publication.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.