{"title":"Time–Temperature Profiles Resulting in Quasi-constant Oxidation Rates","authors":"Dmitri V. Malakhov","doi":"10.1007/s11085-025-10355-1","DOIUrl":null,"url":null,"abstract":"<div><p>If a rate of metal oxidation is diffusion-controlled, then a thickness of a scale emerging on its surface at constant temperature is typically a parabolic function of time. If temperature changes, then this inherently parabolic temporal evolution of the thickness may transform into differently shaped functions. By using a concept of equivalent times introduced and elaborated in this work, it is shown how the oxide thickness versus time dependence <i>L</i>(<i>t</i>) can be established for any time–temperature profile <i>T</i>(<i>t</i>). Then, it is explored whether there exists a unique <i>T</i>(<i>t</i>) regime for which a growth rate is constant, i.e., for which <i>L</i>(<i>t</i>) is linear. It is proven that it is possible to design a time–temperature scheme for which the same holding times cause identical thickness changes. Such a growth mode, however, cannot be sustained indefinitely; there is a time threshold beyond which the linear growth of the oxide layer cannot be maintained any longer. Although oxidation is frequently a thermally activated process, mathematical expressions and conclusions remain the same for non-Arrhenius kinetics.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"102 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-025-10355-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
If a rate of metal oxidation is diffusion-controlled, then a thickness of a scale emerging on its surface at constant temperature is typically a parabolic function of time. If temperature changes, then this inherently parabolic temporal evolution of the thickness may transform into differently shaped functions. By using a concept of equivalent times introduced and elaborated in this work, it is shown how the oxide thickness versus time dependence L(t) can be established for any time–temperature profile T(t). Then, it is explored whether there exists a unique T(t) regime for which a growth rate is constant, i.e., for which L(t) is linear. It is proven that it is possible to design a time–temperature scheme for which the same holding times cause identical thickness changes. Such a growth mode, however, cannot be sustained indefinitely; there is a time threshold beyond which the linear growth of the oxide layer cannot be maintained any longer. Although oxidation is frequently a thermally activated process, mathematical expressions and conclusions remain the same for non-Arrhenius kinetics.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.